Crimped Fin Tube, Crimped Type Fin Tube

Crimped fin tube made by special equipment spiral wrapped aluminum or steel strip on the bare tubes outsurface.

Download PDF
Crimped Fin Tube

Crimped Finned Tube, also known as Cold Raised Finned Tube, is to spirally wound crimped fins on the base tube without welding, but spot welding. Root welded or fully tinned non-ferrous tubes and fins.

Crimped Fins are spirally wrapped onto the base tube, without welding, but spot welded. The steel strip can be copper, carbon steel, stainless steel. Non-ferrous tubes and fins on either root soldered or completely tinned.

Helical Tension Wound Finned Tubes for Air Cooler Since the stainless steel is with high corrosion resistance, the stainless steel crimped fin tube can be widely used when the circumstance has a certain degree of corrosion or cleanliness, such as climatic industry, heating, drying and cooling. Usually applied in fin tube heat exchangers. Maximum working temperature is 180℃.

Crimped Fin Tubes offer a higher airside turbulence and heat transfer on account of the crimping of the fins as compared to the L Type Fin Tube.

Finned tube heaters copper

Both base tube and fin can be copper, carbon steel and stainless steel

Specification of crimped fin tube

Features of crimped fin tube

  1. Fins and tubes are connected tightly
  2. Uniform pitch, small fold, no ash accumulation
  3. Small thermal contact resistance, high heat transfer capability
  4. Maximum working temperature: 120°C
Helically tension wound finned tubes for air cooler

Helically tension wound finned tubes for air cooler

Since the stainless steel is with high corrosion resistance, the stainless steel crimped fin tube can be widely used when the circumstance has a certain degree of corrosion or cleanliness, such as climatic industry, heating, drying and cooling. Usually applied in fin tube heat exchangers.

Maximum working temperature is 180℃.

Crimped Fin Tube (Spiral Tension wound Fin Tube):

The Crimped fin tubes also known as spirally tension wound finned tubes is a very widely used finned Tube type for a various number of applications.

As the name suggests the manufacturing of Crimped Finned Tube (Spiral Tension wound Fin Tube) is done by Tension winding of fin material on the base tube. The base tip of the fin strip is pre formed on a set of performing rollers.

Crimped Fin Tube

This pre forming allows for a wider base and hence contact area is increased. It also enables more turbulence for the air flowing over the finned tube thereby increasing heat transfer efficiency. The ends of Fins are tag welded to secure its bond on the base.

This finning takes place on dedicated specially designed finning machines with auto feed mechanism. This process allows a very long length of tubes to be finned.

It finds application in various industries ranging from driers, radiators, heaters etc and are used in many industries like food, chemical, Oil Cooling etc.

Properties of Crimped Fin Tubes (Spiral Tension Wound Fin Tube):

Manufacturing Range (Crimped Fin Tube/Spiral Tension Wound Fin Tube):-

Sr. No Particulars Range
1 Base Tube Material Stainless Steel, Carbon Steel, Alloy Steel, Titanium, Copper, Duplex Stainless Steel, and Inconel etc. (all material in the theoretical limit)
2 Base Tube Outside Diameter 15.88 mm to 219.00 mm OD (⅜” NB pipe to 8” NB pm)
3 Base Tube Thickness 1.00 mm And Above
4 Base Tube Length 500 mm Min To 15000 mm
5 Fin Material Aluminum, Copper, Stainless Steel, Carbon Steel.
6 Fin Thickness 0.15mm, 2.00mm
7 Fin Density 118 FPM (3 FPI) to 433 FPM (11 FPI)
8 Fin Height 6 mm to 25.40 mm
9 Bare Ends As per Client Requirement
10 Manufacturing Capacity 4,00,000 Meter Per Annum

The Crimped Fin Tubes (Spiral Tension Wound Fin Tube) can be supplied with EN 10204 EN 3.1 and EN 3.2 certifications. We can provide Third Party Inspection from any reputed inspection agency.

Crimped fin tube cross section (spiral tension wound fin tube cross section)

Crimped Fin Tube

Advantages

Transferring heat from a hot fluid into a colder fluid through a tube wall is the reason many of us use finned tubes.

But you may ask, what is the major advantage of using a finned tube? Why can’t you just use a regular tube to make this transfer? Well you can but the rate will be much slower.

By not using a finned tube the outside surface area is not significantly greater than the inside surface area. Because of that, the fluid with the lowest heat transfer coefficient will dictate the overall heat transfer rate. When the heat transfer coefficient of the fluid inside the tube is several times larger than that of the fluid outside the tube the overall heat transfer rate can be greatly improved by increasing the outside surface area of the tube.

Finned tubes increase outside the surface area. By having a finned tube in place, it increases the overall heat transfer rate. This then decreases the total number of tubes required for a given application which then also reduces overall equipment size and can in the long-run decrease the cost of the project. In many application cases, one finned tube replaces six or more bare tubes at less than 1/3 the cost and 1/4 the volume.

For applications that involve the transfer of heat from a hot fluid to a colder fluid through a tube wall, fin tubes are used. Usually, for an air heat exchanger, where one of the fluids is air or some other gas, the air side heat transfer coefficient will be much lower, so additional heat transfer surface area or a fin tube exchanger is very useful. The overall pattern flow of a finned tube exchanger is often crossflow, however, it can also be parallel flow or counterflow.

Fins are used to increase the effective surface area of heat exchanger tubing. Furthermore, finned tubes are used when the heat transfer coefficient on the outside of the tubes is appreciably lower than that on the inside. In other words, heat transferred from liquid to gas, vapor to gas, such as steam to air heat exchanger, and thermic fluid to air heat exchanger.

The rate at which such heat transfer can occur depends on three factors – [1] the temperature difference between the two fluids; [2] the heat transfer coefficient between each of the fluids and the tube wall; and [3] the surface area to which each fluid is exposed.

Finned tubes are used because they help

Increase Heat Transfer Rate

A finned tube exchanger typically has tubes with fins attached to the outside. Usually, there will be some liquid flowing through the inside of the tubes and air or some other gas flowing outside the tubes, where the additional heat transfer surface area due to the finned tube increases the heat transfer rate. In a crossflow fin tube exchanger, the fins will typically be radial fins and they’ll either be circular or square in shape.


Improve Heat Transfer Coefficient

By not using a finned tube, the outside surface area is not significantly greater than the inside surface area. Because of this, the fluid with the lowest heat transfer coefficient will dictate the overall heat transfer rate. When the heat transfer coefficient of the fluid inside the tube is several times larger than that of the fluid outside the tube, the overall heat transfer rate can be greatly improved by increasing the outside surface area of the tube.


Increase Outside Surface Area

By having a finned tube in place, it increases the overall heat transfer rate. Finned tubes increase the outside surface area. This decreases the total number of tubes required for a given application which then also reduces overall equipment size and can in the long-run decrease the cost of the project.

Finned tube heat exchangers are used in a variety of applications, and more so as industrial heat exchangers. An air heat exchanger like the evaporator coil in an air conditioning unit is typically a fin tube exchanger. Another common fin tube air heat exchanger is the car radiator. The purpose of the car radiator is to cool the hot water in the tubes with the air passing through the crossflow. On the contrary, the air conditioner evaporator coil has the purpose of cooling the air passing through it. The finned tubes that are manufactured at Kainon Boilers, use high grade carbon steel, stainless steel, copper, brass, and aluminum. Our finned tube exchangers are designed to meet the specific duty condition, temperature and pressure of the fluids.

Reference

Tied universal expansion joint applications
Type Description Base tube Fin specification (mm)
O.D. (mm) Fin pitch Fin height Fin thick
Embedded G-type fin tueb 16-63 2.1-5 <17 ~0.4
Extruded Single metal combined metal 8-51 1.6-10 <17 0.2-0.4
Low fin tube t-type fin tube 10-38 0.6-2 <1.6 ~0.3
Bamboo tube corrugated tube 16-51 8-30 <2.5 /
Wound l/kl/ll type fin tube 16-63 2.1-5 <17 ~0.4
String String fin tube 25-38 2.1-3.5 <20 0.2-0.5
U-type U-type tube 16-38 / / /
Welding HF-welding fin tube 16-219 3-25 5-30 0.8-3
H/HH type fin tube 25-63 8-30 <200 1.5-3.5
Studed fin tube 25-219 8-30 5-35 φ5-20

What are fin tubes for boiler?

Fin tube boilers represent one of a number of pressurized equipment options used to heat water or convert water into steam under controlled conditions. As in a water tube boiler, water passes through boiler tubes while combustion gases remain in the shell side, passing over the tube surfaces.

Material

We offer you a broad portfolio of materials and can expand our offerings at any time to meet your specific needs regarding thermal conductivity, mechanical properties, or corrosion resistance.

For Aluminum L-Foot finned tubes, the fin material is aluminum, either 1100-0. The tube material is generally carbon steel, stainless steel, or brass; however the tube can be of any material.

For Welded Helical Solid and Welded Helical Serrated finned tubes, the fin and tube materials can be any combination that can be welded together using HIGH FREQUENCY WELDING process.

The materials chosen for a given application are a function of service temperature, corrosive environment, and/or erosive environment. Common tube materials used for our welded product lines include: carbon steel, carbon moly, chrome moly, stainless steel, Inconel, and Incoloy. Common fin materials include: carbon steel; stainless steels of types 304, 310, 316, 321, 409, and 410; Nickel 200, and Inconel.

Carbon steel fins are available on carbon, stainless steel, or copper tube. Please call for a specific size if not listed

We offer you a broad portfolio of materials and can expand our offering at any time to meet your specific needs regarding thermal conductivity, mechanical properties, or corrosion resistance.

Core Tube Material

Material Grade
Carbon Steel Tubes A179, A192, SA210 Gr A1/C, A106 Gr B, A333 Gr3 Gr6 Gr8, A334 Gr3 Gr6 Gr8, 09CrCuSb, DIN 17175 St35.8  St45.8, EN 10216 P195 P235 P265, GB/T3087 Gr10 Gr20, GB/T5310 20G 20MnG,
Alloy Steel Tubes A209 T1 T1a,A213 T2 T5 T9 T11 T12 T22 T91,A335 P2 P5 P9 P11 P12 P22 P91,EN 10216-2 13CrMo4-5 10CrMo9-10 15NiCuMoNb5-6-4
Stainless Steel Tubes TP304/304L, TP316/TP316L TP310/310S TP347/TP347H
Copper Tubes UNS12200/UNS14200/UNS70600, CuNi70/30, CuNi 90/10
Titanium Tubes B338 Gr 2

Classification

Specific classification of finned tubes, there are lot of types of finned tubes, meanwhile also lot of new species comes up.

According to the classification process

  1. rolling forming finned tubes (extruded fin tube);
  2. welded finned tubes ( high frequency welded finned tubessubmerged arc welded finned tubes,
  3. roll forming finned tube
  4. set forming finned tube
  5. casting finned tube
  6. the tension wound finned tubes
  7. inserts the tube.

According to the fin shape classification

  1. square fin tube (Square finned tube);
  2. round finned tube
  3. spiral finned tube (spiral finned tube);
  4. the vertical fin tube (Longitudinal Finned Tube)
  5. corrugated fin tube
  6. serrated spiral finned tubes (Helical Serrated Finned Tubes);
  7. the needle finned tube
  8. the overall plate- fin tube ( plate-fin,
  9. the finned tube (inner finned tube).

And so on.


Depending on whether the finned tubes finned tube material and the same material can be divided into groups

  1. a single metal finned tube
  2. bi-metal composite finned tube

A single metal finned tube Material Classification

  1. copper finned tubes
  2. aluminum finned tube
  3. carbon steel finned tube
  4. stainless steel finned tube
  5. iron ( steel, finned tube etc..

By use classification

  1. air conditioning with finned tubes
  2. air-cooled with finned tubes
  3. the boiler : finned water wall economizerair preheater tubes were used
  4. industrial waste heat recovery with finned tubes
  5. other special purpose finned tube etc.

The material certificate including all the tests can be provided, and also with EN10204 3.1standard.

Труба ребристая

Труба ребристая (конвектор отопительный)

Труба ребристая отопления (регистр отопления)

Отопительные трубы с ребрами обеспечивают хорошую теплопередачу, благодаря абсолютно жесткой посадке плоского ребра на внутренней трубе. Наши отопительные трубы с ребрами применяются везде, где особые условия монтажа требуют использования необычных решений, например, в фасадных системах отопления, на многоярусных складах, в теплицах, при защите стеклянных куполов от запотевания и т.д., также трубы используются для отопления жилых, промышленных и складских помещений. Имеют документированную высокую степень теплоотдачи.

Ребристые трубы монтируются при помощи стандартных фитингов, либо под сварку по желанию Заказчика.

Мы изготавливаем два типоразмера ребристой трубы :

Ду32 и Ду40.

Длину трубы определяет Заказчик.

Покрытие трубы:

-грунт

-порошковая окраска

-горячий цинк.

По ценам и срокам изготовления вы можете узнать, позвонив по телефону

Ребристая труба для отопления на свинокомплексах и птицефабриках

Ребристая труба для отопления на свинокомплексах и птицефабриках

Technology

It is fabricated with a batch of single fins that were processed by the punch press and then manually or mechanically, with a certain distance (wingspan) on the base tube.

This is the earliest fin tube fabrication with low cost and simple production process/ technology, easy to maintain. Divides into manual set and mechanical set. Manual set uses a tool that relies on the power of man to press the fins one by one. This method is limited by the pressure of the fin, so it is easy to get loose. The machine – set fin is carried on the wing piece machine. Due to the mechanical impact or liquid pressure, the pressure of the fin is high, so it can be used in a larger volume. The bonding strength between fin and tube is high and not easy to loosen. Mechanical transmission has high productivity, but the noise is large, the safety is poor, and the working conditions of the workers are not good. Although the hydraulic transmission does not have the above problem, but the equipment price is more expensive, the technical requirement to use maintenance personnel is higher, its productivity is also lower.

Currently HF Fin Tube is one of the most widely used helical fin tubes, you can see it as waste heat recovery in power, metallurgy, concrete, oil and gas, petrochemical, etc. When winding the steel strip around steel tube, the use of high frequency current skin effect and proximity effect on steel strip and steel pipe surface heating, until the plastic state or melt, the coil steel belt must be under pressure to complete welding. Comparing with embedded type and spot welding spiral crimped type, it is more advanced either on fin tube quality or production efficiency or automation degree.

The extruded fin is formed from an outer aluminum tube with a large wall thickness (muff), which is aligned over an inner base tube. The two tubes are pushed through three arbors with rotating discs that literally squeeze or extrude the aluminum fins up and out of the muff material in a spiral shape in one operation. Comparing with welding fin tube, dr extruded fin has higher production efficiency with low cost on material and high heat transfer. At present, it divides into copper or aluminum single metal fin tube and bi-metal composited fin tube.

Fin tube manufacturers produce a wide range of fin tubes. They are used in heat exchangers (air, water and chemically cooled) for various industries such as petroleum, petrochemical, steel, power generation and many more.

Corrosion protection processes are performed during fin tube manufacturing and the material used is corrosion resistant. Some fin tube types are:

Helical high fins

Helical high finned tubes are used to repair air-cooled heat exchangers and are available in 5 variations

Type Photo Descriptions Properties
"KL" fin tubes Fin tube After application the fin foot is knurled into the corresponding knurling on the base tube thereby enhancing the bond between the fin and tube resulting in improved heat transfer characteristics. Max. operating. temp. 260ºC Max working temperature – 260 °C (500 °F)
Atmospheric corrosion resistance – acceptable
Mechanical resistance – acceptable
Fin material – aluminum, copper
"G" fin tubes Fin tube Fin strip is wound & embedded on a groove and securely locked by closing the groove with the base tube metal. This ensures maximum heat transfer at high temperatures.
Max. operating temp. 450ºC
Max working temperature – 400 °C (752 °F)
Atmospheric corrosion resistance – poor
Mechanical resistance – acceptable
Fin material – aluminum, copper, carbon steel
"LL" fin tubes Fin tube Manufactured in the same way as the ‘L’ fin type except that the fin foot is overlapped to completely enclose the base tube thereby giving excellent corrosion resistance. This type of tube is often used as an alternative to the more expensive extruded type fin in corrosive environments. Max. operating. temp. 180ºC Max working temperature – 180 °C (356 °F)
Atmospheric corrosion resistance – acceptable
Mechanical resistance – poor
Fin material – aluminum, copper
“L” fin tubes Fin tube The strip material is subjected to controlled deformation under tension giving the optimum contact pressure of the foot of the fin onto the base tube thus maximizing the heat transfer properties. The foot of the fin considerably enhances the corrosion protection of the base tube. Max. operating. temp. 150ºC Max working temperature – 150 °C (302 °F)
Atmospheric corrosion resistance – acceptable
Mechanical resistance – poor
Fin material – aluminum, copper
Extruded fin tubes Fin tube This fin type is formed from a bi-metallic tube consisting of an aluminium outer tube and an inner tube of almost any material. The fin is formed by rolling material from the outside of the exterior tube to give an integral fin with excellent heat transfer properties and longevity. Extruded fin offers excellent corrosion protection of the base tube. Max. operating. temp. 280ºC. Max working temperature – 285 °C (545 °F)
Atmospheric corrosion resistance – excellent
Mechanical resistance – excellent
Fin material – aluminum

Uncovered tube area between the fins

Fin foot is pre-formed into an LL shape (overlapped LL) and applied to base tube under tension.
However, foot is pre-shaped to give overlap of one foot onto another, thereby improving base tube protection and thermal contact area Fin materials: Aluminum Base tube materials: Any metallic material.
The smooth flat fins perpendicular to the tube surface give rise to very low resistance to air /gas flow and ensure that fouling is kept to a minimum. The foot of the fin is in contact with base tube and provides a complete sheathing over the finned length.

The Overlapped “L” fin design has interlocking fins that are wound together to prevent movement and separation. The fin protects the entire tubes, so the designation works well for the applications where corrosion is a factor.This type of finned tube is often used as an alternative to the more expensive extruded type fin in corrosive environments.

  • Common Applications: Steam Coils, Air Pre-heaters.
  • Max. Working Temperature: 180 °C
  • Atmospheric Corrosion Resistance: OK
  • Mechanical Resistance: Poor
  • Fin Material: Copper, Aluminum
  • Base Tube materials: Any material available, such as Carbon steel Tube, A179, A192, A210, stainless tube A269/A213 T5 T11 T22 304 316

What are fin tubes?

Fin tubes are a type of heat exchanger that is used in many different industries. These tubes have a finned surface, which increases their surface area and allows them to transfer heat more efficiently. This makes them ideal for applications where high heat transfer rates are required, such as in power plants and refrigeration systems.

Fin tubes are made from a variety of materials, including copper, aluminum, and stainless steel. They are available in a range of sizes and shapes and can be customized to meet the specific needs of each application.

One of the key benefits of fin tubes is their ability to operate efficiently at high temperatures and pressures. This makes them suitable for use in a wide range of applications, including air conditioning, heat exchangers, and radiators.

In addition to their high thermal performance, fin tubes are also durable and long-lasting. They are resistant to corrosion and can withstand the harsh environments often found in industrial settings. This makes them a cost-effective solution for many different industries.

Delivery

Inspection

The first actual inspection work on the fin tube heat exchanger is the raw materials inspection. Based on the ASME Code, providing material test reports for fin tube heat exchanger plates is mandatory. For other components, the marking inspection will be enough.

Inspection coil for fin tube
Inspection coil for fin tube
Inspection raw tube for fin tube
Inspection raw tube for fin tube
Inspection raw tube for fin tube
Inspection raw tube for fin tube
Inspection ring for fin tube
Inspection ring for fin tube
Inspection fin tube
Inspection fin tube
Inspection fin tube
Inspection fin tube

Packing

The Finned Tube is exposed to the outside to prevent rainwater from falling, try to keep it dry, and it should not be too close to the ground to prevent the irrigation in the greenhouse from corroding the finned tube. After the maintenance of the finned tube, the service life of the finned tube will be greatly increased.

Packing fin tube
Packing fin tube
Packing fin tube
ASME SA179 fin tubes

Wooden cases

ASME SA179 fin tubes

Well packing

Packing fin tube
FAQ

Frequently Asked Questions (FAQs) about Crimped Fin Tube

We are a pretty proactive bunch. So, while we do charge a small fee per design to cover our costs, we absorb these costs when it is for a regular customer or where we are working jointly on a project. We also refund the fees in case it is followed by an order.

1. What is a crimped fin tube?

A crimped fin tube is a type of heat exchanger tube that has fins on the outer surface. The fins are created by compressing and shaping the surface of the tube, providing increased surface area for efficient heat transfer.

2. How does a crimped fin tube work?

Crimped fin tubes work by increasing the heat transfer surface area, allowing for more efficient heat exchange between the fluid inside the tube and the surrounding environment. The fins create turbulence and enhance heat transfer, making them ideal for applications requiring effective heat dissipation or heat recovery.

3. What are the benefits of using crimped fin tubes?

The benefits of crimped fin tubes include improved heat transfer efficiency, compact design, and enhanced performance in various heat exchanger applications. They are commonly used in air coolers, condensers, and other thermal systems where efficient heat exchange is essential.

4. What materials are crimped fin tubes made from?

Crimped fin tubes are often made from materials like aluminum, copper, stainless steel, and other alloys. The choice of material depends on the specific application, the operating conditions, and the required corrosion resistance.

5. What are the typical applications of crimped fin tubes?

Crimped fin tubes are commonly used in HVAC systems, refrigeration units, power plants, automotive radiators, and various industrial heat exchangers. They are particularly suitable for applications involving air-to-fluid heat transfer.

6. How are crimped fin tubes manufactured?

The manufacturing process of crimped fin tubes involves compressing and shaping the fins onto the outer surface of the base tube. The crimping process creates grooves or indentations in the tube, resulting in the formation of fins. Various methods, including mechanical crimping and hydraulic crimping, can be used in the manufacturing process.

7. Can crimped fin tubes be used in corrosive environments?

Yes, crimped fin tubes can be manufactured from corrosion-resistant materials to be used in corrosive environments. Materials like stainless steel or special coatings can be applied to the fin tubes to enhance their resistance to corrosion.

8. Are crimped fin tubes suitable for high-temperature applications?

Crimped fin tubes made from materials with high-temperature resistance, such as stainless steel or certain alloys, can be used in high-temperature applications. However, the temperature limitations depend on the specific material used in the manufacturing process.

9. Can crimped fin tubes be customized for specific applications?

Yes, crimped fin tubes can be customized in terms of size, material, and fin geometry to meet the requirements of specific applications. Manufacturers often offer a range of options to tailor the fin tubes to the needs of their customers.

10. What maintenance is required for crimped fin tubes?

Regular cleaning and inspection are essential to maintain the efficiency of crimped fin tubes. Dust, debris, or fouling on the fin surfaces can reduce heat transfer efficiency. Periodic maintenance and cleaning are recommended to ensure optimal performance in heat exchanger applications.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

The White Glove Service You Deserve

When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.

application

Materials delivered on-time and at a fair price

application

No delays in production or manufacturing process

application

Meet engineering specifications to ensure top quality

application

World-class customer service ready to help