SS 309 Shield
Stainless 309s tube shields are made of 309s stainless steel and can be customized to fit perfectly straight sections
Stainless 309 tube shields are made of 309 stainless steel and can be customized to fit perfectly straight sections, curved sections and even fins and specialty tubes.
The alloy is not recommended for use in highly carburising atmospheres since it exhibits only moderate resistance to carbon absorption. Alloy 309 can be utilized in slightly oxidizing, nitriding, cementing and thermal cycling applications, albeit, the maximum service temperature must be reduced.
Alloy 309 is an austenitic stainless steel developed for use in high temperature corrosion resistance applications. The alloy resists oxidation up to 1900°F (1038°C) under non-cyclic conditions. Frequent thermal cycling reduces oxidation resistance to approximately 1850°F (1010°C). Because of its high chromium and low nickel content, Alloy 309 can be utilized in sulphur containing atmospheres up to 1832°F (1000°C). The alloy is not recommended for use in highly carburizing atmospheres since it exhibits only moderate resistance to carbon absorption. Alloy 309 can be utilized in slightly oxidizing, nitriding, cementing and thermal cycling applications, albeit, the maximum service temperature must be reduced. When heated between 1202 – 1742°F (650 – 950°C) the alloy is subject to sigma phase precipitation. A solution annealing treatment at 2012 – 2102°F (1100 – 1150°C) will restore a degree of toughness. 309S is the low carbon version of the alloy. It is utilized for ease of fabrication. 309 is a high carbon modification developed for enhanced creep resistance. It most instances the grain size and carbon content of the plate can meet both the 309S and 309H requirements. Alloy 309 can be easily welded and processed by standard shop fabrication practices.
Our precision machinery and state of the art facilities enables us to produce these 309 tube shield in superior quality and precise dimensions. All these years have enhanced our capabilities and enabled us to produce all kinds of standard tube shield as well as custom snap rings as per customer’s specifications. We have numerous combinations of sizes readily available in large number of stocks and can fabricate custom sizes according to customer’s requirement.
In common with other austenitic stainless steels, 309 grade has strong work hardening characteristics. Clearly, in some cases, this can be an advantage, but generally, it is an issue to be considered carefully.
If it is likely to be an issue, discussion with the producer can be valuable as minor variations to the precise composition and process can have benefits.
Where heavy sections have to we welded, post-weld annealing may be necessary to restore corrosion resistance.
The cross-sectional shape of boiler tube erosion shields is mostly semi-circular (180 degrees), and there are also 120-160 degrees. It is mainly used on finned tubes (water-cooled walls); boiler tubes erosion shields are divided into direct wear-resistant shields, in-curve anti-wear shields, outer-curve anti-wear shields, side-curve anti-wear shields, s-curve anti-wear shields, etc. The length of the straight anti-wear shields ranges from 20mm to 3000mm, and the general length of 1000-2000mm is commonly used. The anti-wear shields with bends generally requires a processing, drawing and the following parameters should be on the drawing: outer diameter of the pipe used, bending of the pipe radius r (to the centre of the pipe), the degree of bending angle, and the length of the straight sections on both sides of the arc segment of the wear-resistant shields.
The most basic parameter of boiler tube erosion shields is the outer diameter of the tube used (that is, the inner diameter of boiler tubes erosion shields). The main specifications of the tube are: 32, 38, 42, 44.5, 48, 51, 57, 60, 63.5 , 76, 89mm, etc .; the inner diameter of the boiler tubes erosion shields is usually 1-3mm larger than the outer diameter of the tube used, depending on the actual requirements.
Stainless steels are high-alloy steels which have higher corrosion resistance compared to other steels due to the presence of large amounts of chromium. Based on their crystalline structure, they are further divided into ferritic, austenitic, and martensitic steels.
Grade 309 stainless steel has high corrosion resistance and strength compared to 304 stainless steel. The following datasheet gives an overview of grade 309 stainless steel.
The following table shows the chemical composition of grade 309 stainless steel.
Grade | C | Mn | Si | P | S | Cr | Ni | Fe |
---|---|---|---|---|---|---|---|---|
SS 309 | 0.20 max | 2.0 max | 0.75 max | 0.045 max | 0.030 max | 22.0 – 24.0 | 12.0 – 15.0 | Balance |
SS 309S | 0.08 max | 2.0 max | 0.75 max | 0.045 max | 0.030 max | 22.0 – 24.0 | 12.0 -15.0 | Balance |
The physical properties of grade 309 stainless steel are given in the following table.
Properties | Metric | Imperial |
---|---|---|
Density | 8 g/cm3 | 0.289lb/in3 |
Melting point | 1455°C | 2650°F |
The following table outlines the mechanical properties of annealed grade 309 stainless steel.
Properties | Metric | Imperial |
---|---|---|
Tensile strength | 620 MPa | 89900 psi |
Yield strength (@ strain 0.200%) | 310 MPa | 45000 psi |
Izod impact | 120 - 165 J | 88.5 - 122 ft-lb |
Shear modulus (typical for steel) | 77 GPa | 11200 ksi |
Elastic modulus | 200 GPa | 29008 ksi |
Poisson's ratio | 0.27-0.30 | 0.27-0.30 |
Elongation at break (in 50 mm) | 45% | 45% |
Hardness, Brinell | 147 | 147 |
Hardness, Rockwell B | 85 | 85 |
Hardness, Vickers (converted from Rockwell B hardness) | 169 | 169 |
The thermal properties of grade 309 stainless steel are displayed in the following table.
Properties | Metric | Imperial |
---|---|---|
Thermal expansion co-efficient (@ 0-100°C/32-212°F) | 14.9 μm/m°C | 8.28 μin/in°F |
Thermal conductivity (@ 0-100°C/32-212°F) | 15.6 W/mK | 108 BTU in/hr.ft².°F |
Other designations equivalent to grade 309 stainless steel are included in the following table.
Standard 1 | Standard 2 | Standard 3 | Standard 4 |
---|---|---|---|
ASTM A167 | ASME SA249 | ASTM A314 | ASTM A580 |
ASTM A249 | ASME SA312 | ASTM A358 | FED QQ-S-763 |
ASTM A276 | ASME SA358 | ASTM A403 | FED QQ-S-766 |
ASTM A473 | ASME SA403 | ASTM A409 | MIL-S-862 |
ASTM A479 | ASME SA409 | ASTM A511 | SAE J405 (30309) |
DIN 1.4828 | ASTM A312 | ASTM A554 | SAE 30309 |
The presence of nickel gives 304 stainless steel its corrosion resistance and makes it suitable for various general-purpose applications. 2. 309 Stainless Steel: Compared to 304, 309 stainless steel contains a higher percentage of chromium and nickel, typically around 23% chromium and 12% nickel.
Type 309 is employed for parts requiring both corrosion and heat resistance and oxidation resistance up to 2000 °F. Strength at elevated temperatures is similar to that of 18-8 Stainless Steels. This alloy posses excellent resistance to oxidation as well as high tensile and creep strengths at elevated temperatures.
Type 309S Stainless Steel is identical to Type 309 except for a lower carbon content that minimizes carbide precipitation and improves weldability.
Use 309L (including ER309LSi) when joining mild steel or low alloy steel to stainless steels, for joining dissimilar stainless steels such as 409 to itself or to 304L stainless, as well as for joining 309 base metal.
316 contains a minimum 2.0% molybdenum which makes it much more corrosion resistant than 304 however, as it is a more expensive element, generally makes 316 a more expensive grade of metal.
309 has a machinability rating of 43% relative to AISI B1112 steel. Room temperature forming is suggested. Weld with AWS E309-16 covered electrodes or ER309 bare wire. Some Rod Coil is stocked as 309E which is EN 1.4828.
309 | 309S | 309H |
---|---|---|
UNS S30900 | UNS S30908 | UNS S30909 |
ASTM A240 | ASTM A240 | ASTM A240 |
ASTM A480 | ASTM A480 | ASTM A480 |
ASME SA240 | ASME SA240 | ASME SA240 |
AMS 5523 | AMS 5523 | AMS 5523 |
The cross-sectional shape of boiler tubes shields is mostly semi-circular (180 degrees), and there are also 120-160 degrees.
It is mainly used on finned tubes (water-cooled walls); boiler tube erosion shields are divided into direct wear-resistant shields, in-curve, anti-wear shields, outer-curve, anti-wear shields, side-curve anti-wear shields, s-curve anti-wear shields, etc.
The length of the straight anti-wear shields ranges from 20mm to 3000mm, and the general length of 1000-2000mm is commonly used. The anti-wear shields with bends generally requires a processing drawing and the following parameters should be on the drawing: outer diameter of the pipe used, bending of the pipe Radius R (to the center of the pipe), the degree of bending angle, and the length of the straight sections on both sides of the arc segment of the wear-resistant shields.
The most basic parameter of boiler tubes shields is the outer diameter of the tube used (that is, the inner diameter of boiler tubes erosion shields). The main specifications of the tube are: 32, 38, 42, 44.5, 48, 51, 57, 60, 63.5 , 76, 89mm, etc . the inner diameter of the boiler tubes erosion shields is usually 1-3mm larger than the outer diameter of the tube used, depending on the actual requirements.
The current production process for tube shields is to use high-pressure presses and professional moulds for pressing.
Tube shields from us are manufactured to exacting standards. Advanced equipment and material handling capabilities permit us to offer the fastest turnaround times anywhere.
The current production process for tube shields is to use high-pressure presses and professional moulds for pressing.
The production time is short, the welding performance is good, the welding seam does not fall off, the surface is smooth and the appearance is beautiful. The arc-shaped wear-resistant tile is pressed on a press or bent on a pipe bender with a special mould.
To ensure the accuracy of the material. Positive Material Identification (PMI) of stainless steel sheets for tube shields is critical to verifying the grade and composition of stainless steel before it goes into production.
The raw materials for the production of tube shields are generally purchased directly from standard steel mills, and each batch has an MTC. Due to the sharpe limitations of raw materials, it is inevitable that excess materials will be produced. We can use the excess material to make a smaller size snap ring.
Different types of stainless steel are selected according to the specific conditions of different working conditions.
The boiler was originally designed to be accurate. Different materials have different temperature resistance and mechanical strength, generally has a temperature resistance of 600 ℃ or less.
We can also supply boiler tubes erosion shields of other materials.
Tube shields are custom made to fit perfectly to straight sections, curved sections and even finned and specialised tubing.
Boiler tube erosion shields, also known as anti-corrosion shields, anti-wear plate, anti-wear protection shields, anti-wear cover plate, anti-corrosion cover plate, boiler climbing pipe, anti-wear pressure plate, etc. , which are used in combination with snap rings.
Boiler tube erosion shields are produced using a high-pressure press and professional mould pressing. The production time is short, the welding performance is good, the welding should not fall off, the surface is smooth, and the appearance is beautiful. Boiler tube erosion shields with bends are formed by pressing on a press or bending with a special abrasive on a tube bender.
Boiler tube shields are designed to eliminate major maintenance and downtime costs from boiler and condenser tube failure.
The service life of boiler tubes erosion shields is different in different types of boilers and different use parts.
The normal service life is a period of overhaul (3-5 years) for the boiler. Generally, some boilers will be replaced or retrofitted every time the boiler is overhauled. The main replacements are those of the Boiler Tubes Erosion Shields that are severely thinned and exceeded the standard; those that were not firmly detached during the boiler operation during the previous installation. According to the wear of the Boiler Tubes Erosion Shields during replacement, if the thickness is severely reduced, it needs to be replaced, the deformation is severe, and those that cannot protect the tube also need to be replaced. In addition, some boiler tubes are not equipped with Boiler Tubes Erosion Shields, but during the boiler inspection, it is found that the tubes have a tendency of wear and thinning. Generally, Boiler Tubes Erosion Shields are also installed to prevent further wear of the tubes and cause serious consequences such as boiler explosion.
On the heating surface of superheater and economizer tube bundle of the boiler, in order to prevent the pipe from being worn by high temperature flue gas washing, boiler tubes erosion shields are mostly arranged on the outer side of the pipe in the direction of flue gas flow. The elbow erosion shields solves the abrasion problems of water wall tubes, superheater tubes, economizer tubes and reheater tubes in the furnace, and provides guarantee for the long-term and reliable operation of CFB boiler. With the increase of CFB boiler products, the type and quantity of The elbow erosion shields will increase.
Our understanding of and commitment to the steam and power generation business enables us to solve your boiler tube erosion or corrosion problems efficiently. Our technical staff can quickly recommend the proper material type and configuration to meet your needs…and can quote your outage delivery requirements on a month basis.
Do you accept a special order?
A: Yes, we do. We can manufacture all kinds of chemical equipments according to your technical drawings(Before you givethem to us, will sign the contract and confidentiality agreement with you. You don’t need to worry about that.)
Can you make a design for us?
A: Yes, we can. What we supply is not only product, but also solution and design. And if you make the product in our factory,the design will be free. If not, design fees will be charged accordingly.
Q: Do you provide after-sales service?
A: Yes, we do. This product is guaranteed up to one year from purchase unless manmade damage. If there is anything wrongwith product itself quality problem,we will change or repair it at our charge.If not, we will provide aftersales service at your charge.
Tube erosion shields are mainly used on the windward side of the heating surface of the boiler, such as superheaters, reheaters, economizers, and water-cooled wall pipes.
Erosion shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.
We offer shielding for tubing, covering straight, bent and finned sections, as well as the clips that hold these in place.
In the long term, these shields more than pay for themselves, preventing the costly replacement of tubing and avoiding the downtime that results from tube breakdown and leaks.
In general, most of them are called “wear-resistant tile” and “wear-resistant cover plate”. Erosion Shields are special boiler accessories.
Generally, most of them are used in power station boilers, small boilers are used less, and some coal chemical industries will also use them.
The main role is to protect the heating surface of the boiler pipes, reduce pipeline wear, and increase the heating surface of the pipes.
Generally, boiler tubes erosion shields are also installed to prevent further wear of the tubes and cause serious consequences such as boiler explosion.
The main role is to protect the heating surface of the boiler pipes, reduce pipeline wear, and increase the heating surface of the pipes.
The snap ring is a short section that is installed on the pipe in conjunction with the wear-resistant tile. Generally, it is welded to the wear-resistant tile by lap welding, that is, to cover the wear-resistant tile slightly, so it is larger than the wear-resistant tile. The opening arc is around 190-200 degrees, the welding position needs to be set aside to facilitate welding and fixing. The width of the snap ring must not be less than 20mm.
The installation requirements of anti-friction tiles of different shapes are slightly different. Basically, each anti-friction tile is installed with not less than 2-4 snap rings. The snap ring and the anti-friction tile are welded together to prevent expansion due to heat. The tiles fall off, and the joints are required to be fully welded.
Generally, boiler tubes erosion shields are also installed to prevent further wear of the tubes and cause serious consequences such as boiler explosion.
The main role is to protect the heating surface of the boiler pipes, reduce pipeline wear, and increase the heating surface of the pipes.
When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.