GB 5310 12Cr2MoWVTiB high pressure seamless boiler tubes

GB 5310 12Cr2MoWVTiB high pressure seamless boiler tubes

GB 5310 12Cr2MoWVTiB high pressure seamless boiler tubes are designed and manufactured according to the Chinese national standard GB/T 5310-2017.

GB 5310 12Cr2MoWVTiB high pressure seamless boiler tubes are a type of seamless steel tubes or pipes designed and manufactured according to the Chinese national standard GB/T 5310-2017. As stated in [1], they are made of pearlitic heat-resistant steel with a composition including Cr, Mo, W, V and Ti, which offer excellent high-temperature mechanical properties and corrosion resistance.

GB 5310 12Cr2MoWVTiB high pressure seamless boiler tubes are typically used in high-pressure boilers with working pressure above 9.8 MPa and working temperature between 450℃ and 650℃. They are mainly used for making superheaters, reheaters, steam pipes, and other high-pressure components in power plant boilers.

GB 5310 12Cr2MoWVTiB high-pressure seamless boiler tubes must meet strict standards for production and use, ensuring their safety and reliability in high-pressure applications. They come in various lengths, outer diameters, wall thicknesses, and end types such as plain end, beveled end, or threaded ends.

Application

12Cr2MoWVTiB boiler pipe is suitable for general structure, fluid transport, low and medium pressure boiler or boiling water piping, pipe size locomotive, petroleum, chemical, electric, power, high temperature, low temperature, corrosion, seamless refined plant, oil refining furnace, heat exchange tubes, fertilizer equipment, pipeline works etc.

12Cr2MoWVTiB steel is a kind of multi-element microalloyed low-alloy bainite heat-resistant steel developed by ourselves from the end of 1960s to the middle of 1970s in China. Due to the proper coordination of various alloy elements, the steel has high heat strength, and its heat strength performance and service temperature are higher than those of the same kind of steel abroad. Therefore, 12Cr2MoWVTiB can be used for boiler superheat tube panel and reheat The manufacture of boiler tube and main steam tube, in which superheater tube and reheater tube are called serpentine tube.

Temperature application range: wall temperature ≤ 600 ℃ (620 ℃ can be used when considering oxidation loss in strength calculation)

Chemical Compositions(%) of 12Cr2MoWVTiB

Grade C Si Mn Cr Mo V
12Cr2MoWVTiB 0.08-0.15 0.45-0.75 0.45-0.65 1.60-2.10 0.50-0.65 0.28-0.42
Ti B W P S  
0.08-0.18 0.002-0.008 0.30-0.55 ≤0.025 ≤0.015  

Mechanical Properties of 20G

Grade Tensile strength(MPa) Yield strength(MPa) Elongation Hardness
12Cr2MoWVTiB 540-735 ≥345 ≥18% ---

The W.T. tolerance of 16Mn

W.T.(S) Tolerance of W.T.
<3.5  +15%(+0.48mm min)
 -10%(+0.32mm min)
3.5-20 +15%,-10%
>20 D<219 ±10%
D≥219 +12.5%,-10%

Process performance of 12Cr2MoWVTiB

(1) Forging:
The start temperature of rolling (forging) of 12Cr2MoWVTiB steel is 1150 ~ 1200ec, and the end temperature is 850 ° C. after rolling (forging), the steel is cooled by stacking.

(2) Cold bending
12Cr2MoWVTiB steel is mainly used for small-diameter steel tubes. Generally, the steel pipes need to be cold bent and do not need heat treatment after cold bending.

(3) Heat treatment process (according to GB5310-2008 standard)
Normalizing and tempering: normalizing temperature: 1020ec ~ 1060 ° C; holding for 30min; tempering temperature: 760ec ~ 790ec, holding for 3h; normalizing structure is granular bainite, normalizing + high temperature tempering structure is tempered bainite.

(4) Selection of welding materials:
The weldability of 12Cr2MoWVTiB steel is good. It can be used for manual arc welding, gas welding, friction welding, TIG welding and plasma welding. R347 welding rod is used for manual arc welding, h08cr2movnb welding wire is used for gas welding, butt joint with 12Cr1MoV steel, h08crmov or h08cr2movnb welding wire is used. Neutral partial oxidation flame is suitable for gas welding. After welding, it shall be normalized at 1000-1030 ℃ and tempered at 760-780 ° C. before manual arc welding with thickness greater than 6mm, it shall be preheated to 250-300ec, and tempered at 760-780 ° C after welding. After butt welding, it should be heated to 780ec, kept warm for 40 minutes, and then cooled to below 400ec.

Development of 12Cr2MoWVTiB high pressure boiler tube

◆Professor Liu rongzao put forward the theory of multiple composite strengthening in the 1960s, developed G102 (12Cr2MoWVTiB) in the late 1960s and G106 (10cr5mowvtib) in the 1970s

◆Professor Liu rongzao's theory and G102's success, Professor V.K. Sikka of the United States adores very much, and T91 research and development has been successful.

◆T23 (HCM2S, cc2199-3, 6cr2w2monbvnb) developed in Japan and T24 (cc2514, 6cr2mo1vtinb) developed in Europe are all G102 modifications.

In 1982, when Shanghai Boiler Plant and Harbin boiler plant introduced the manufacturing technology of 300MW and 600MW Subcritical controlled circulation boiler from CE company of the United States, CE company of the United States agreed to use 12Cr2MoWVTiB (steel 102) steel pipe instead of TP347H and TP304H steel tubes to manufacture 300MW and 600MW boiler high temperature superheater and reheater. In the superheater, the actual maximum design temperature of 102 steel tube is 580x ℃; in the reheater, the actual maximum design temperature of 102 steel pipe is 599 ℃.

According to DL / t715_, 12Cr2MoWVTiB steel is mainly used for superheater and reheater pipes with wall temperature not higher than 600 ° C; however, according to DL / T 715-2015, it is mainly used for superheater pipes and reheater pipes with wall temperature not higher than 575 ° C. It can be seen that the upper limit of service temperature in 2015 version is 25 ° C lower than that in 2000 version, which may be due to the serious oxidation problem when the steel is used in the steam side of the heating surface tube.

Other Name

Additional Condition

UT(Ultrasonic examination), AR(As Hot Rolled only), TMCP(Thermal Mechanical Control Processing), N(Normalized), Q+T(Quenched and Tempered),Z Direction Test(Z15,Z25,Z35), Charpy V-Notch Impact Test, The Third Party Test (such as SGS Test), Coated or Shot Blasting and Painting.

Standard Standard

GB 5310 is a standard for seamless tubes used in high-pressure steam boilers and pipelines. The main application for GB 5310 tubes is as high-pressure pipeline tubes in boiler projects. These tubes can be used for superheaters, reheaters, and windpipes.

The GB 5310 standard applies to tubes made from materials such as:

The long-term use temperature for GB 5310 20G seamless steel pipes used as headers and steam pipes is ≤ 425 ° C.

Chemical Compositions(%) of GB 5310

Steel Grade C Si Mn S P Cr Mo V Ti B W Ni Al Nb N
20G 0.17-0.23 0.17-0.37 0.35-0.65 0.015 0.025                    
20 MnG 0.17-0.24 0.17-0.37 0.70-1.00 0.015 0.025                    
25MnG 0.22-0.27 0.17-0.37 0.70-1.00 0.015 0.025                    
15MoG 0.12-0.20 0.17-0.37 0.40-0.80 0.015 0.025   0.25-0.35                
20MnG 0.15-0.25 0.17-0.37 0.40-0.80 0.015 0.025   0.44-0.65                
12CrMoG 0.08-0.15 0.17-0.37 0.40-0.70 0.015 0.025 0.40-0.70 0.40-0.55                
15CrMoG 0.12-0.18 0.17-0.37 0.40-0.70 0.015 0.025 0.80-1.10 0.40-0.55                
12Cr2MoG 0.08-0.15 ≤0.60 0.40-0.60 0.015 0.025 2.00-2.50 0.90-1.13                
12Cr1MoVG 0.08-0.15 0.17-0.37 0.40-0.70 0.010 0.025 0.90-1.20 0.25-0.35 0.15-0.30              
12Cr2MoWVTiB 0.08-0.15 0.45-0.75 0.45-0.65 0.015 0.025 1.60-2.10 0.50-0.65 0.28-0.42 0.08-0.18 0.002-0.008 0.30-0.55        
10Cr9Mo1VNbN 0.08-0.12 0.20-0.50 0.30-0.60 0.010 0.020 8.00-9.50 0.85-1.05 0.18-0.25       ≤0.040 ≤0.040 0.06-0.10 0.03-0.07

Manufacturing methods

Steel smelting method

High-quality carbon structural steel and alloy structural steel shall be smelted by electric furnace plus furnace refining, oxygen converter plus furnace refining or electroslag remelting method, and steel refined outside the furnace shall be subjected to vacuum degassing treatment.

10Cr9Mo1VNbN, 10Cr9MoW2VNbBN, 10Cr11MoW2VNbCu1BN, 11Cr9Mo1W1VNbBN and stainless (heat-resistant) steel should be smelted by electric furnace plus furnace refining or electroslag remelting. The steel refined outside the furnace should be vacuum degassed.

After consultation between the supplier and the buyer, and indicating in the contract, other higher-required smelting methods may be adopted. When the purchaser specifies a certain smelting method, it should be indicated in the contract.


Manufacturing methods and requirements for tube blanks

The tube blank can be produced by continuous casting, die casting or hot rolling (forging).

Continuous casting tube blanks shall comply with the provisions of YB/T 4149, in which the level of low-fold structural defects shall not exceed 1; the hot-rolled (forged) tube blanks shall comply with the provisions of YB/T ××××; It is carried out in accordance with the regulations for hot-rolled (forged) tube blanks.


Manufacturing method of steel pipe

Steel pipes shall be manufactured by hot rolling (extrusion, expansion) or cold drawing (rolling). Steel pipes of grade 08Cr18Ni11NbFG shall be manufactured by cold drawing (rolling) seamless method.


Delivery status

The steel pipe shall be delivered in a heat treated condition. The heat treatment system for steel pipes shall comply with the requirements of Table 4. The heat treatment system for steel pipes should be filled in the quality certificate.

Heat treatment system for steel pipes

No. Steel Pipe Heat treatment
1 12Ga、20Ga 880 ℃~940 ℃,Normalizing
2 20MnGa、25MnGa 880 ℃~940 ℃,Normalizing
3 15MoGa、20MoGa 890 ℃~950 ℃,Normalizing
4 12CrMoGa 900 ℃~960 ℃,Normalizing;650 ℃~730 ℃,Tempering
5 15CrMoGa 900 ℃~960 ℃,Normalizing;660 ℃~730 ℃,Tempering
6 12Cr2MoGa 900 ℃~960 ℃,Normalizing;700 ℃~750 ℃,Tempering
It can also be heated to 900 °C ~ 960 °C, and the furnace is cooled to 700 °C for more than 1 h, and air-cooled.
7 12Cr1MoVGa 980 ℃~1 020 ℃,Normalizing,980 °C ~ 1 020 °C normalizing, when the wall thickness is greater than 30 mm, forced cooling; 720 °C ~ 760 °C tempering.
8 12Cr2MoWVTiB 1 000 ℃~1 035 ℃,Normalizing;760 ℃~790 ℃,Tempering
9 07Cr2MoW2VNbB ≥1 040 ℃,Normalizing,≥730 ℃,Tempering
10 08Cr2Mo1W2VTiB ≥980 ℃,Normalizing,≥730 ℃,Tempering
11 12Cr3MoVSiTiB 1 040 ℃~1 060 ℃,Normalizing;720 ℃~770 ℃,Tempering
12 09Ni1MnMoNbCu 880 ℃~980 ℃,Normalizing,580 ℃~680 ℃,Tempering
13 10Cr9Mo1VNbN ≥1 040 ℃,Normalizing,≥730 ℃,Tempering
14 10Cr9MoW2VNbBN ≥1 040 ℃,Normalizing,≥730 ℃,Tempering
15 10Cr11MoW2VNbCu1BN ≥1 040 ℃,Normalizing,≥730 ℃,Tempering
16 11Cr9Mo1W1VNbBN 1 040 ℃~1 080 ℃,Normalizing,740 ℃~780 ℃,Tempering
17 15Cr18Ni9b Solution treatment: solution temperature ≥1 040 °C.
18 10Cr18Ni9NbCu3BNb Solution treatment: solution temperature ≥ 1 100 °C.
19 07Cr25Ni21NbNcd Separate solution treatment: solution temperature ≥ 1 100 °C.
20 08Cr18Ni11Nbbd Solution treatment: solution temperature ≥1 040 °C.
21 07Cr18Ni11Nbcd Separate solution treatment: hot rolling (extrusion, expansion) steel tube solid solution temperature ≥ 1 050 °C, cold drawn (rolled) steel tube solid solution temperature ≥ 1100 °C.
22 08Cr18Ni10NbFG Softening heat treatment before cold working: softening heat treatment temperature should be at least 50 °C higher than solution heat treatment temperature; solution treatment after final cold working: solution temperature ≥1 180 °C
a. The finishing temperature of the hot-rolled steel pipe is at the critical temperature of the phase transition Ar3 to the upper limit of the temperature specified in the table, and when the steel pipe is air-cooled, the steel pipe is considered to be normalized.

b. The finishing temperature of the hot-rolled steel pipe meets the solid solution temperature specified in the table. As an alternative to the solid solution treatment method, the steel pipe can be separately quenched by water or cooled by other fast enough methods.

c, the solution treatment should be a separate heat treatment, and the heat treatment in the process is not allowed to replace the separate solution treatment.

d. According to the requirements of the purchaser, the steel pipes of the grades 07Cr25Ni21NbN, 08Cr19Ni10Nb and 07Cr18Ni11Nb may be subjected to a stabilization heat treatment lower than the initial solution treatment temperature after the solution treatment, and the temperature of the stabilization heat treatment is negotiated between the supplier and the purchaser.

Mechanical Properties of GB5310

Grade Tensile strength
(Mpa)
Yield point(Mpa)
not less than
Elongation(%)
not less than
Impact(J)
not less than
20G 410-550 245 24/22 40/27
25MnG 485-640 275 20/18 40/27
15MoG 450-600 270 22/20 40/27
20MnG 415-665 220 22/20 40/27
12CrMoG 410-560 205 21/19 40/27
12Cr2MoG 450-600 280 22/20 40/27
12Cr1MoVG 470-640 255 21/19 40/27
12Cr2MoWVTiB 540-735 345 18 40/27
10Cr9Mo1VNb ≥585 415 20 40
1Cr18Ni9 ≥520 206 35  
1Cr19Ni11Nb ≥520 206 35  

Additional Condition

  • UT(Ultrasonic examination),
  • AR(As Hot Rolled only)
  • TMCP(Thermal Mechanical Control Processing)
  • N(Normalized)
  • Q+T(Quenched and Tempered)
  • Z Direction Test(Z15,Z25,Z35)
  • Charpy V-Notch Impact Test
  • The Third Party Test (such as SGS Test)
  • Coated or Shot Blasting and Painting.

GB 5310 High pressure boiler tube Application

  • GB5310 20G seamless steel pipes are mainly used for pressure vessels, machinery, pipe fittings, oil and chemical industry.
  • GB 5310 High pressure boiler tube Other Name
  • GB 5310 High pressure boiler tube, 20G boiler steel pipe, 20G boiler pipe

Boiler tubing is used in these industries:

  • Steam Boilers
  • Power Generation
  • Fossil Fuel Plants
  • Electric Power Plants
  • Industrial Processing Plants
  • Cogeneration Facilities
Standard Standard
GB steel pipe

GB Steel pipe execution standard

GB seamless steel pipes are available from various manufacturers and suppliers in China. They come in different sizes, grades, and surface finishes to meet specific project requirements.

According to incomplete statistics, there are more than 240 national standard steel pipe production enterprises and more than 250 seamless steel pipe units.

  1. GB/T8162-1999 (Seamless steel pipe for structure). Mainly used for general structure and mechanical structure. Its representative material (brand): carbon steel 20, 45 steel; alloy steel Q345, 20Cr, 40Cr, 20CrMo, 30-35CrMo, 42CrMo, etc.
  2. GB/T8163-1999 (Seamless steel pipe for fluid conveying). Mainly used in engineering and large equipment to transport fluid pipelines. The representative material (brand) is 20, Q345, etc.
  3. GB3087-1999 (Seamless steel pipes for low and medium pressure boilers). Mainly used in industrial boilers and domestic boilers to transport low and medium pressure fluid pipelines. Representative materials are 10 and 20 steel.
  4. GB5310-1995 (Seamless steel pipes for high-pressure boilers). Mainly used for high temperature and high pressure transmission fluid headers and pipelines in power stations and nuclear power plants Representative materials are 20G, 12Cr1MoVG, 15CrMoG, etc.
  5. GB5312-1999 (Carbon steel and carbon manganese steel seamless steel pipe for ships). Mainly used for I and II pressure pipes for marine boilers and superheaters. Representative materials are 360, 410, 460 steel grades, etc.
  6. GB1479-2000 (Seamless steel tubes for high-pressure fertilizer equipment). Mainly used for conveying high temperature and high pressure fluid pipelines on fertilizer equipment. Representative materials are 20, 16Mn, 12CrMo, 12Cr2Mo, etc.
  7. GB9948-1988 (Seamless steel pipe for petroleum cracking). Mainly used in boilers, heat exchangers and fluid pipelines of petroleum smelters. Its representative materials are 20, 12CrMo, 1Cr5Mo, 1Cr19Ni11Nb, etc.
  8. GB18248-2000 (Seamless steel pipe for gas cylinders). Mainly used to make various gas and hydraulic cylinders. Its representative materials are 37Mn, 34Mn2V, 35CrMo, etc.
  9. GB/T17396-1998 (Hot-rolled seamless steel pipe for hydraulic props). Mainly used to make coal mine hydraulic supports, cylinders and columns, and other hydraulic cylinders and columns. Its representative materials are 20, 45, 27SiMn, etc.
  10. GB3093-1986 (High-pressure seamless steel pipe for diesel engine). Mainly used for high pressure oil pipe of diesel engine injection system. The steel pipe is generally cold drawn, and its representative material is 20A.
  11. GB/T3639-1983 (Cold drawn or cold rolled precision seamless steel tube). It is mainly used for steel pipes for mechanical structures and carbon pressure equipment, requiring high dimensional accuracy and good surface finish. Its representative materials are 20, 45 steel, etc.
  12. GB/T3094-1986 (Cold drawn seamless steel pipe special-shaped steel pipe). It is mainly used to make various structural parts and parts, and its materials are high-quality carbon structural steel and low-alloy structural steel.
  13. GB/T8713-1988 (Precision inner diameter seamless steel pipe for hydraulic and pneumatic cylinders). It is mainly used to make cold-drawn or cold-rolled seamless steel pipes with precise inner diameters for hydraulic and pneumatic cylinders. Its representative materials are 20, 45 steel, etc.
  14. GB3093-1986 (High-pressure seamless steel pipes for diesel engines). Mainly used for high pressure oil pipe of diesel engine injection system. The steel pipe is generally cold drawn, and its representative material is 20A.
  15. GB/T3639-1983 (Cold drawn or cold rolled precision seamless steel tube). It is mainly used for steel pipes for mechanical structures and carbon pressure equipment, requiring high dimensional accuracy and good surface finish. Its representative materials are 20, 45 steel, etc.
  16. GB/T3094-1986 (Cold drawn seamless steel pipe special-shaped steel pipe). It is mainly used to make various structural parts and parts, and its materials are high-quality carbon structural steel and low-alloy structural steel.
  17. GB/T8713-1988 (Precision inner diameter seamless steel pipe for hydraulic and pneumatic cylinders). It is mainly used to make cold-drawn or cold-rolled seamless steel pipes with precise inner diameters for hydraulic and pneumatic cylinders. Its representative materials are 20, 45 steel, etc.
  18. GB13296-1991 (Stainless steel seamless steel tubes for boilers and heat exchangers). Mainly used in boilers, superheaters, heat exchangers, condensers, catalytic tubes, etc. of chemical enterprises. Used high temperature, high pressure, corrosion resistant steel pipe. Its representative materials are 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr18Ni12Mo2Ti, etc.
  19. GB/T14975-1994 (Stainless steel seamless steel pipe for structure). It is mainly used for general structure (hotel and restaurant decoration) and mechanical structure of chemical enterprises, which are resistant to atmospheric and acid corrosion and have certain strength. Its representative materials are 0-3Cr13, 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr18Ni12Mo2Ti, etc.
  20. GB/T14976-1994 (Stainless steel seamless steel pipe for fluid transportation). Mainly used for pipelines that transport corrosive media. Representative materials are 0Cr13, 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr17Ni12Mo2, 0Cr18Ni12Mo2Ti, etc.
  21. YB/T5035-1993 (Seamless steel pipe for automobile axle casing). It is mainly used to make high-quality carbon structural steel and alloy structural steel hot-rolled seamless steel pipes for automobile half-axle sleeves and drive axle axle tubes. Its representative materials are 45, 45Mn2, 40Cr, 20CrNi3A, etc.

Chemistry constitute table of main product steel grade

Steel Grade Chemistry Constitute
C Si Mn Cr Ni Mo P S Ti Cu
Q195 0.06-0.12 ≤0.30 0.25-0.50 ≤0.3 ≤0.3 - ≤0.045 ≤0.050 - ≤0.30
Q235 0.14-0.22 ≤0.30 0.30-0.65 ≤0.3 ≤0.3 - ≤0.045 ≤0.050 - ≤0.30
Q345B ≤0.20 ≤0.55 1.00-1.60 - - - ≤0.040 ≤0.040 - -
10# 0.07-0.13 0.07-0.37 0.35-0.65 ≤0.15 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20# 0.17-0.23 0.07-0.37 0.35-0.65 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
35# 0.32-0.39 0.07-0.37 0.50-0.80 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
45# 0.42-0.50 0.07-0.37 0.50-0.80 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20Cr 0.18-0.24 0.07-0.37 0.50-0.80 0.70-1.00 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
40Cr 0.37-0.44 0.07-0.37 0.50-0.80 0.80-1.10 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
20CrMo 0.17-0.24 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
30CrMo 0.26-0.34 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
35CrMo 0.32-0.40 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
42CrMo 0.38-0.45 0.07-0.37 0.50-0.80 0.90-1.20 1.00-1.40 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
20CrMoTi 0.17-0.23 0.07-0.37 0.40-0.70 0.45-0.75 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
35Mn2 0.32-0.39 0.07-0.37 1.40-1.80 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
40Mn2 0.37-0.44 0.07-0.37 1.40-1.80 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
35SiMn 0.32-0.40 1.10-1.40 1.10-1.40 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
15Mn 0.12-0.16 0.07-0.37 0.70-1.00 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20Mn 0.17-0.23 0.07-0.37 0.70-1.00 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25

GB steel pipe size and tolerance

Deviation level Standardized outer diameter tolerance
D1 ±1.5%,min ±0.75 mm
D2 ±1.0%。min ±0.50 mm
D3 ±0.75%.min±0.30 mm
D4 ±0.50%。min ±0.10 mm

Seamless tube processing

With years of expertise, we provide a diverse array of steel tube processing options. From sawing and machining tube blanks to intricate bending and upsetting operations, we actively assist you throughout your projects.

Our capabilities extend to eccentricity reduction and concentricity enhancement through turning and grinding. We excel in creating complex geometries using processes like rotary swaging and axial forming. Additionally, we offer property modifications via partial heat treatment, ensuring tailored solutions for your specific needs.

application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

  • High-temperature services such as heater tubes
  • Low-temperature services such as cryogenic application
  • Very high presser service such as steam header

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

  • For Pipes: ASTM A335 Gr P1, P5, P11, P9
  • For Wrought Fittings: ASTM A234 Gr.WP5, WP9, WP11
  • For Forged Fittings: ASTM A182 F5, F9, F11 etc.

Why the application of alloy steel pipe is wider than others

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.


What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.


The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.


Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.


Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.

Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.
Steel strips bunding for fixed pipes

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Our packing can meet any needs of the customers.

FAQ FAQ

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.
  • Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.

Pipes, Tubes and Hollow Sections

Norms

  • API 5L – Line Pipe
  • ASTM A 53 – Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, Steel Pipe
  • ASTM A 106 – Seamless Carbon Steel Pipe for High-Temperature Service
  • ASTM A 213 – Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
  • ASTM A 269 – Seamless and Welded Austenitic Stainless Steel Tubing for General Service
  • ASTM A 312 – Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes
  • ASTM A 333 – Seamless and Welded Steel Pipe for Low-Temperature Service
  • ASTM A 335 – Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
  • ASTM A 358 – Electric-Fusion-Welded Austenitic Chromium-Nickel Stainless Steel Pipe for High-Temperature Service and General Applications
  • ASTM A 671 – Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures
  • ASTM A 672 – Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures
  • ASTM A 790 – Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe
  • ASTM A 928 – Ferritic/Austenitic (Duplex) Stainless Steel Pipe Electric Fusion Welded with Addition of Filler Metal
  • EN 10208-2 – Steel pipes for pipelines for combustible fluids – Part 2: Pipes of requirement class B
  • EN 10210-1/2 – Hot finished structural hollow sections of non-alloy and fine grain steels
  • EN 10216-1 – Seamless steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10216-2 – Seamless steel tubes for pressure purposes – Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10217-1 – Welded steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10217-2 – Welded steel tubes for pressure purposes – Part 2: Electric welded non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10219-1/2 – Cold formed welded structural hollow sections of non-alloy and fine grain steels
  • EN 10297-1 – Seamless circular steel tubes for mechanical and general engineering purposes – Part 1 Non-alloy and alloy steel tubes

Grade

  • API 5L Gr. A, B, X42, X52, X60, X65, X70
  • ASTM A 53 Gr. A, Gr. B
  • ASTM A106 Gr. A, B, C
  • ASTM A 213 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H, T5, T9, T11
  • ASTM A 269 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 312 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 333 Gr. 3, Gr. 6 ASTM A 335 P1, P2, P5, P9, P11, P12, P22, P91, P92
  • ASTM A 358 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 671 CC 60, CC 65, CC 70
  • ASTM A 672 CC 60, CC 65, CC 70
  • ASTM 790 UNS S31803, UNS S32205, UNS S32750, UNS S32760
  • ASTM A928
  • EN 10208-2 L245, L 290, L360
  • EN 10210-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10216-1 P235 TR1/2
  • EN 10216-2 P235 GH, P265 GH
  • EN 10217-1 P235 TR1/2, P275 TR1/2
  • EN 10217-2 P235 GH, P265 GH
  • EN 10219-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10297-1 E235, E275, E315, E355, E470

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion and oxidation. Increases hardenability and wear resistance. Increases high temperature strength.
Nickel Increases hardenability. Improves toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high temperature hardness, and wear resistance. Enhances the effects of other alloying elements. Eliminate temper brittleness in steels. Increases high temperature strength.
Manganese Increases hardenability. Combines with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making. Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces fine grain size.
Aluminum Forms nitride in nitriding steels. Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear resistance.
Tungsten Increases hardness at elevated temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

The White Glove Service You Deserve

When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.

application

Materials delivered on-time and at a fair price

application

No delays in production or manufacturing process

application

Meet engineering specifications to ensure top quality

application

World-class customer service ready to help