35crmo Seamless Steel Pipe

35crmo Seamless Steel Pipe

35CrMo seamless steel pipe is a durable and reliable material that is suitable for various mechanical and industrial applications.

35CrMo steel material belongs to alloy structural steel. 35 refers to the carbon content of about 35%, Cr is chromium, and Mo is molybdenum.

35CrMo steel material has high static strength, high impact toughness, high fatigue limit, higher hardenability than 40Cr steel, high temperature resistance, long-term working temperature can reach 500 ℃, poor welding performance.

Chemical composition of 35CrMo steel material:

35CrMo is a type of alloy steel that contains chromium and molybdenum as its main alloying elements. The specific chemical composition may vary slightly depending on the manufacturing standards and requirements.

Element Composition
Carbon C 0.32 - 0.40
Silicon Si 0.17 - 0.37
Mn 0.40 - 0.70
Sulfur S Allowable residual content ≤ 0.035
Phosphorus P Allowable residual content ≤ 0.035
Cr 0.80 - 1.10
Ni Allowable residual content ≤ 0.030
Cu Allowable residual content ≤ 0.030
Mo 0.15 - 0.25

Mechanical properties

The mechanical properties of 35CrMo steel material were as follows:

Property Value
Tensile strength σb (MPA) ≥ 985 (100)
Yield strength σs (MPA) ≥ 835 (85)
Elongation δ5 (%) ≥ 12
Area reduction ψ (%) ≥ 45
Impact energy Akv (J) ≥ 63
Hardness ≤ 229HB

Delivery condition: annealing / tempering.

Hardness: ≦229 HBW


Characteristic

35CrMo has high static strength, impact toughness and high fatigue limit, harden ability is higher than 40Cr , higher creep strength and lasting strength under high temperature , long-term working temperature up to 500 ℃.


Application

35CrMo seamless steel pipes are commonly used in various industries, including petroleum, chemical, power, boilers, and more. They are suitable for high-temperature and high-pressure applications, such as in the manufacturing of pipelines, cylinders, and structural components.

35CrMo steel can be processed into important structural parts working under high load, such as the transmission parts of vehicles and engines; the rotor, main shaft, transmission shaft of heavy load and large section parts of turbogenerator.

Standard Standard
GB steel pipe

GB Steel pipe execution standard

GB seamless steel pipes are available from various manufacturers and suppliers in China. They come in different sizes, grades, and surface finishes to meet specific project requirements.

According to incomplete statistics, there are more than 240 national standard steel pipe production enterprises and more than 250 seamless steel pipe units.

  1. GB/T8162-1999 (Seamless steel pipe for structure). Mainly used for general structure and mechanical structure. Its representative material (brand): carbon steel 20, 45 steel; alloy steel Q345, 20Cr, 40Cr, 20CrMo, 30-35CrMo, 42CrMo, etc.
  2. GB/T8163-1999 (Seamless steel pipe for fluid conveying). Mainly used in engineering and large equipment to transport fluid pipelines. The representative material (brand) is 20, Q345, etc.
  3. GB3087-1999 (Seamless steel pipes for low and medium pressure boilers). Mainly used in industrial boilers and domestic boilers to transport low and medium pressure fluid pipelines. Representative materials are 10 and 20 steel.
  4. GB5310-1995 (Seamless steel pipes for high-pressure boilers). Mainly used for high temperature and high pressure transmission fluid headers and pipelines in power stations and nuclear power plants Representative materials are 20G, 12Cr1MoVG, 15CrMoG, etc.
  5. GB5312-1999 (Carbon steel and carbon manganese steel seamless steel pipe for ships). Mainly used for I and II pressure pipes for marine boilers and superheaters. Representative materials are 360, 410, 460 steel grades, etc.
  6. GB1479-2000 (Seamless steel tubes for high-pressure fertilizer equipment). Mainly used for conveying high temperature and high pressure fluid pipelines on fertilizer equipment. Representative materials are 20, 16Mn, 12CrMo, 12Cr2Mo, etc.
  7. GB9948-1988 (Seamless steel pipe for petroleum cracking). Mainly used in boilers, heat exchangers and fluid pipelines of petroleum smelters. Its representative materials are 20, 12CrMo, 1Cr5Mo, 1Cr19Ni11Nb, etc.
  8. GB18248-2000 (Seamless steel pipe for gas cylinders). Mainly used to make various gas and hydraulic cylinders. Its representative materials are 37Mn, 34Mn2V, 35CrMo, etc.
  9. GB/T17396-1998 (Hot-rolled seamless steel pipe for hydraulic props). Mainly used to make coal mine hydraulic supports, cylinders and columns, and other hydraulic cylinders and columns. Its representative materials are 20, 45, 27SiMn, etc.
  10. GB3093-1986 (High-pressure seamless steel pipe for diesel engine). Mainly used for high pressure oil pipe of diesel engine injection system. The steel pipe is generally cold drawn, and its representative material is 20A.
  11. GB/T3639-1983 (Cold drawn or cold rolled precision seamless steel tube). It is mainly used for steel pipes for mechanical structures and carbon pressure equipment, requiring high dimensional accuracy and good surface finish. Its representative materials are 20, 45 steel, etc.
  12. GB/T3094-1986 (Cold drawn seamless steel pipe special-shaped steel pipe). It is mainly used to make various structural parts and parts, and its materials are high-quality carbon structural steel and low-alloy structural steel.
  13. GB/T8713-1988 (Precision inner diameter seamless steel pipe for hydraulic and pneumatic cylinders). It is mainly used to make cold-drawn or cold-rolled seamless steel pipes with precise inner diameters for hydraulic and pneumatic cylinders. Its representative materials are 20, 45 steel, etc.
  14. GB3093-1986 (High-pressure seamless steel pipes for diesel engines). Mainly used for high pressure oil pipe of diesel engine injection system. The steel pipe is generally cold drawn, and its representative material is 20A.
  15. GB/T3639-1983 (Cold drawn or cold rolled precision seamless steel tube). It is mainly used for steel pipes for mechanical structures and carbon pressure equipment, requiring high dimensional accuracy and good surface finish. Its representative materials are 20, 45 steel, etc.
  16. GB/T3094-1986 (Cold drawn seamless steel pipe special-shaped steel pipe). It is mainly used to make various structural parts and parts, and its materials are high-quality carbon structural steel and low-alloy structural steel.
  17. GB/T8713-1988 (Precision inner diameter seamless steel pipe for hydraulic and pneumatic cylinders). It is mainly used to make cold-drawn or cold-rolled seamless steel pipes with precise inner diameters for hydraulic and pneumatic cylinders. Its representative materials are 20, 45 steel, etc.
  18. GB13296-1991 (Stainless steel seamless steel tubes for boilers and heat exchangers). Mainly used in boilers, superheaters, heat exchangers, condensers, catalytic tubes, etc. of chemical enterprises. Used high temperature, high pressure, corrosion resistant steel pipe. Its representative materials are 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr18Ni12Mo2Ti, etc.
  19. GB/T14975-1994 (Stainless steel seamless steel pipe for structure). It is mainly used for general structure (hotel and restaurant decoration) and mechanical structure of chemical enterprises, which are resistant to atmospheric and acid corrosion and have certain strength. Its representative materials are 0-3Cr13, 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr18Ni12Mo2Ti, etc.
  20. GB/T14976-1994 (Stainless steel seamless steel pipe for fluid transportation). Mainly used for pipelines that transport corrosive media. Representative materials are 0Cr13, 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr17Ni12Mo2, 0Cr18Ni12Mo2Ti, etc.
  21. YB/T5035-1993 (Seamless steel pipe for automobile axle casing). It is mainly used to make high-quality carbon structural steel and alloy structural steel hot-rolled seamless steel pipes for automobile half-axle sleeves and drive axle axle tubes. Its representative materials are 45, 45Mn2, 40Cr, 20CrNi3A, etc.

Chemistry constitute table of main product steel grade

Steel Grade Chemistry Constitute
C Si Mn Cr Ni Mo P S Ti Cu
Q195 0.06-0.12 ≤0.30 0.25-0.50 ≤0.3 ≤0.3 - ≤0.045 ≤0.050 - ≤0.30
Q235 0.14-0.22 ≤0.30 0.30-0.65 ≤0.3 ≤0.3 - ≤0.045 ≤0.050 - ≤0.30
Q345B ≤0.20 ≤0.55 1.00-1.60 - - - ≤0.040 ≤0.040 - -
10# 0.07-0.13 0.07-0.37 0.35-0.65 ≤0.15 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20# 0.17-0.23 0.07-0.37 0.35-0.65 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
35# 0.32-0.39 0.07-0.37 0.50-0.80 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
45# 0.42-0.50 0.07-0.37 0.50-0.80 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20Cr 0.18-0.24 0.07-0.37 0.50-0.80 0.70-1.00 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
40Cr 0.37-0.44 0.07-0.37 0.50-0.80 0.80-1.10 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
20CrMo 0.17-0.24 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
30CrMo 0.26-0.34 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
35CrMo 0.32-0.40 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
42CrMo 0.38-0.45 0.07-0.37 0.50-0.80 0.90-1.20 1.00-1.40 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
20CrMoTi 0.17-0.23 0.07-0.37 0.40-0.70 0.45-0.75 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
35Mn2 0.32-0.39 0.07-0.37 1.40-1.80 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
40Mn2 0.37-0.44 0.07-0.37 1.40-1.80 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
35SiMn 0.32-0.40 1.10-1.40 1.10-1.40 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
15Mn 0.12-0.16 0.07-0.37 0.70-1.00 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20Mn 0.17-0.23 0.07-0.37 0.70-1.00 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25

GB steel pipe size and tolerance

Deviation level Standardized outer diameter tolerance
D1 ±1.5%,min ±0.75 mm
D2 ±1.0%。min ±0.50 mm
D3 ±0.75%.min±0.30 mm
D4 ±0.50%。min ±0.10 mm

Seamless tube processing

With years of expertise, we provide a diverse array of steel tube processing options. From sawing and machining tube blanks to intricate bending and upsetting operations, we actively assist you throughout your projects.

Our capabilities extend to eccentricity reduction and concentricity enhancement through turning and grinding. We excel in creating complex geometries using processes like rotary swaging and axial forming. Additionally, we offer property modifications via partial heat treatment, ensuring tailored solutions for your specific needs.

What is a seamless pipe used for?

Seamless steel pipe is regularly used in the transportation of fluids such as water, natural gas, waste and air. It is also regularly required in many high-pressure, high-corrosive environments such as in the oil & gas, power generation and pharmaceutical industries. Some common uses of seamless pipes include:

Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.
Steel strips bunding for fixed pipes

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Our packing can meet any needs of the customers.

FAQ FAQ

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.
  • Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.

Pipes, Tubes and Hollow Sections

Norms

  • API 5L – Line Pipe
  • ASTM A 53 – Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, Steel Pipe
  • ASTM A 106 – Seamless Carbon Steel Pipe for High-Temperature Service
  • ASTM A 213 – Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
  • ASTM A 269 – Seamless and Welded Austenitic Stainless Steel Tubing for General Service
  • ASTM A 312 – Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes
  • ASTM A 333 – Seamless and Welded Steel Pipe for Low-Temperature Service
  • ASTM A 335 – Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
  • ASTM A 358 – Electric-Fusion-Welded Austenitic Chromium-Nickel Stainless Steel Pipe for High-Temperature Service and General Applications
  • ASTM A 671 – Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures
  • ASTM A 672 – Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures
  • ASTM A 790 – Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe
  • ASTM A 928 – Ferritic/Austenitic (Duplex) Stainless Steel Pipe Electric Fusion Welded with Addition of Filler Metal
  • EN 10208-2 – Steel pipes for pipelines for combustible fluids – Part 2: Pipes of requirement class B
  • EN 10210-1/2 – Hot finished structural hollow sections of non-alloy and fine grain steels
  • EN 10216-1 – Seamless steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10216-2 – Seamless steel tubes for pressure purposes – Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10217-1 – Welded steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10217-2 – Welded steel tubes for pressure purposes – Part 2: Electric welded non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10219-1/2 – Cold formed welded structural hollow sections of non-alloy and fine grain steels
  • EN 10297-1 – Seamless circular steel tubes for mechanical and general engineering purposes – Part 1 Non-alloy and alloy steel tubes

Grade

  • API 5L Gr. A, B, X42, X52, X60, X65, X70
  • ASTM A 53 Gr. A, Gr. B
  • ASTM A106 Gr. A, B, C
  • ASTM A 213 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H, T5, T9, T11
  • ASTM A 269 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 312 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 333 Gr. 3, Gr. 6 ASTM A 335 P1, P2, P5, P9, P11, P12, P22, P91, P92
  • ASTM A 358 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 671 CC 60, CC 65, CC 70
  • ASTM A 672 CC 60, CC 65, CC 70
  • ASTM 790 UNS S31803, UNS S32205, UNS S32750, UNS S32760
  • ASTM A928
  • EN 10208-2 L245, L 290, L360
  • EN 10210-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10216-1 P235 TR1/2
  • EN 10216-2 P235 GH, P265 GH
  • EN 10217-1 P235 TR1/2, P275 TR1/2
  • EN 10217-2 P235 GH, P265 GH
  • EN 10219-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10297-1 E235, E275, E315, E355, E470

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion and oxidation. Increases hardenability and wear resistance. Increases high temperature strength.
Nickel Increases hardenability. Improves toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high temperature hardness, and wear resistance. Enhances the effects of other alloying elements. Eliminate temper brittleness in steels. Increases high temperature strength.
Manganese Increases hardenability. Combines with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making. Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces fine grain size.
Aluminum Forms nitride in nitriding steels. Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear resistance.
Tungsten Increases hardness at elevated temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

The White Glove Service You Deserve

When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.

application

Materials delivered on-time and at a fair price

application

No delays in production or manufacturing process

application

Meet engineering specifications to ensure top quality

application

World-class customer service ready to help