Stainless steel return U bend

Stainless steel return U bend

A stainless steel return U bend is a type of pipe fitting that is commonly used in plumbing and HVAC systems.

It is designed to change the direction of the fluid flow in a piping system, typically by 180 degrees.

The U bend shape allows the fluid to flow back in the opposite direction.

Stainless steel return U bend
Stainless steel return U bend
Stainless steel return U bend
Stainless steel return U bend
Stainless steel return U bend
Stainless steel return U bend

Stainless steel return U bends have a U-shaped configuration that allows them to make a 180-degree turn in the direction of the flow, similar to other types of U-bend fittings.

Stainless steel return U bends are made from various grades of stainless steel alloys. Stainless steel is a type of alloy that contains at least 10.5% chromium, which provides excellent resistance to corrosion and staining. Depending on the specific application, other elements such as nickel, molybdenum, or titanium may also be added to the stainless steel alloy to achieve desired properties.

Features

Material Selection: Stainless steel return bends are typically crafted from high-quality stainless steel alloys. This material is chosen for its exceptional resistance to corrosion, rust, and staining.

Design: These bends are designed with a U-shaped or semi-circular configuration. This design allows for a 180-degree change in the direction of fluid flow.

Sizing: Stainless steel return bends are available in various sizes, allowing them to be used in a wide range of pipe diameters.

Welded or Seamless: Depending on the application, return bends can be either welded or seamless. Welded versions are created by joining two pieces of stainless steel, while seamless bends are made from a single piece, reducing the risk of leaks.


Benefits

  1. Corrosion Resistance: Stainless steel return bends offer excellent resistance to corrosion and rust, making them ideal for applications in harsh environments, such as chemical processing plants.

  2. Strength and Durability: Stainless steel is renowned for its strength and durability. These bends can withstand high-pressure systems and temperature variations.

  3. Hygienic Properties: The smooth, non-porous surface of stainless steel is easy to clean, which is crucial for applications where hygiene is a priority, such as in the food and pharmaceutical industries.

  4. Leak Prevention: Properly installed stainless steel return bends provide a secure and leak-free connection, ensuring the integrity of the entire piping system.

Tubular Heat exchanger

Applications

Stainless steel return U bends are commonly used in industries such as chemical processing, petrochemicals, and food processing, where corrosion resistance and sanitary conditions are essential. They can be manufactured in different sizes, shapes, and thicknesses to meet specific design requirements.

  1. Chemical and Petrochemical Industry: These bends are used in the conveyance of corrosive chemicals and gases, where maintaining the integrity of the piping system is essential.

  2. Oil and Gas Industry: Return bends are found in pipelines that transport oil, natural gas, and other hydrocarbons.

  3. Food and Beverage Industry: They are essential in food processing plants, breweries, and dairies, where sanitation and corrosion resistance are vital.

  4. Pharmaceutical Industry: In the pharmaceutical sector, return bends are used to maintain the purity of fluids during the manufacturing process.

  5. Marine Applications: Due to their resistance to saltwater corrosion, stainless steel return bends are employed in marine piping systems.

What’s a pipe bend?

Bend on process

Bend on process

A pipe bend is the generic term for what is called in piping as an “offset” – a change in direction of the piping. A bend is usually meant to mean nothing more than that there is a “bend”– a change in direction of the piping (usually for some specific reason) – but it lacks specific, engineering definition as to direction and degree. Bends are usually custom-made (using a bending machine) on site and suited for a specific need.

Pipe bends typically have a minimum bending radius of 1.5 times pipe radius (R). If this bending radius is less than 1.5R, it is called Elbow. Reference to any international / industry standard need to be traced. 1.5, 3 and 4.5 R are the most common bending radii in industry.

A pipe bend typically flows smoother since there are not irregular surfaces on the inside of the pipe, nor does the fluid have to change direction abruptly.

The most basic difference of them is the elbow relatively short than bend, R = 1D to 2 D is elbow More than 2D is bend. In the production process, cold bends can use Bending Machine to bend by ready-made straight bend. One-time completed also don’t need second corrosion. But elbow need manufacturers make to order, to do anti-corrosion, order cycle is long. Elbow price is higher than bend. But cost performance is much higher than bend. It is well-known that bend do not have anticorrosive processing is easy damaged, but the price is cheap so are  used very much in some demand which not very high engineering.

Pipe bends are used in many industries, including chemical, oil and gas, electric, metallurgy and shipbuilding. Pipe bends function as structural passageways to facilitate the transfer of substances, such as water and fuel. Some have a short radius while others have a long radius. Long radius bends give less frictional resistance and allow for less pressure drop when compared to short radius bends. When selecting the type of pipe bend, it’s important to choose one that is compatible to the application.

The Radii of Bend Pipes

Bend pipes come in all types of radii, including 3D bends, 4D bends, 5D bends, 8D bends and 10D bends. The radius in 5D bends is five times the nominal diameter. With a 10-inch diameter pipe, the radius of the centerline of the bend would be 50 inches. Pipe bending for the specified radii is both art and science. And with today’s modern machines and advanced software, pipe bending is highly precise. With the right machine, lubrication, tooling and material, achieving the perfect bend is a sure thing.


The Differences Between Bends and Elbows

Although the words bends and elbows are often used as synonyms, there are some differences. Bend is a term for any offset of direction in the piping while elbow is an engineering term. Elbows have limitations to angle, bend radius and size. Most angles are either 45 degrees or 90 degrees. All other offsets are specifically pipe bends. And while elbows have sharp corners, bends never do. The most basic different between a bend and an elbow is the radius of curvature. Bends have a radius more than twice the diameter, and elbows have a radius of curvature between one and two times the size of the pipe’s diameter. All elbows are bends, but not all bends are elbows.


Induction Bending for Creating 5D Bends

Induction bending is one of the means of bending pipes for 5D and other bends. Local heating, using high-frequency induced electrical power, is applied. An induction coil is placed around the pipe and heats a circumferential area of the pipe at a temperature between 850 to 1100 degrees Celsius. When the right temperature is reached, the pipe moves through an induction coil while an arm applies the bending force. There are many benefits to induction bending. It allows for large radii for smooth flow of fluid, reduces the number of welds in a system and fabricates bends quickly. With faster production, efficiency is ramped up. It’s also a clean process, as no lubrication is needed, and water is recycled.


Ram-Type Bending

Ram-type bending is an old and effective bending method for bending pipes, including 4D bends and 5D bends. This method is often used in muffler shops. It’s also one of the least expensive ways to bend pipe. A hydraulically driven ram forces the pipe against pivot blocks or rollers. Often, a ram tool is used to produce a concave surface and to prevent stretching on the exterior of the bend. The only downside is that ram-type bending is not as controllable as other methods.


Roll Bending

Roll bending is commonly used for pipes in the construction industry. Rolls are positioned vertically or horizontally to produce very large radii. The pinch-style roll bender is one of the machine types used for roll bending. A tube feeds between the lower and upper roll to produce the wanted bend angle. Some applications may require an additional roll to guide the tube outward when the coil is being formed.


Mandrel Bending

The mandrel bending pipe method is effective when the least amount of deformation is desired. The pipe is supported with a mandrel support to bend the pipe. The pipe is drawn through a counter bending die for further bending. This method of pipe bending is used in the manufacture of heat exchanger tubing, dairy tubing and exhausts like turbocharger and custom made ones. This method produces a non-deformed diameter every time.


Rotary Draw Bending

Rotary draw bending is often used for bending pipe when a constant diameter and good finish are desired. The pipe is drawn through a stationary counter-bending die onto a fixed radius former die. It’s used for roll cages, stock car chassis and other types of pipes.


Centerline Radius, Outside Diameter and Wall Thickness

Centerline radius, outside diameter and wall thickness are important variables with bending pipe methods. Plus, every pipe schedule has a nominal wall thickness. And since wall thickness can vary, any variations need to be accounted for. Other bending variables include the neutral line, outside bend radius and inside bend radius. Pipes experience spring back after bending. The harder the pipe and small the bend’s centerline radius, the more spring back, which results in radial growth. Copper pipes have less radial growth than steel pipe due to its less spring back. In pipe bending, consistency, size and quality of the weld seam matter for centerline radius, outside diameter and wall thickness. When these are right, the perfect bend can be created.


Bend geometry

Bend geometry Figure. Flow in a standard, long-radius bend is illustrated here, with typical flow patterns, wear points and reacceleration zone shown

Pipe bends can take a variety of different geometries, which can have a significant influence on particle impact angle. Basic long-radius bends are the most commonly used because they provide the most gradual change in direction for solids, and because the angle of impact on the pipe wall is relatively small, which helps to minimize the risk of attrition or erosion.

Common-radius bends are made by bending standard tubes or pipes (Figure). The radius of curvature, RB, may range from 1 to 24 times the tube diameter, D. Common-radius bends can be loosely classified as follows: Elbow (RB /D = 1 to 2.5); Short radius RB /D = 3 to 7; Long-radius (RB /D = 8 to 14; Long sweep (RB /D = 15 to 24).


Pressure drop associated with bends

As particle impacts occur, particularly against bends, there will be a significant reduction in particle velocity. These particles will then have to be re-accelerated back to their terminal velocity, which will add significantly to the pressure drop — and hence, energy loss — for the conveying system. This is particularly true after short-radius bends.

The pressure drop in a bend depends on the ratio of bend radius to pipe diameter, the gas velocity, Ug, and the internal roughness, k, of the pipe. When a two-phase, gas-solid suspension undergoes a directional change in a pipeline, the bend naturally acts as a segregator of the two phases. Centrifugal forces act on the particles, concentrating them near the outer wall of the bend. Friction coefficients within the bend will be different than those in the adjacent straight sections.


Specification of Pipe Bends

Dimensions Standards
Outside Diameter Seamless Pipe Bends(1/2 - 24), ERW/Welded/Fabricated Pipe Bends(2 - 36)
Bending Radius 3D, 5D, 10D or Custom
Product Angle 1.5d Pipe Bends to 180 degree
Wall Thickness 3mm - 40mm/ SCH5, SCH10, SCH20, SCH30, SCH40, STD, XS, SCH60, SCH80, SCH120, SCH140, SCH160, XXS
Materials Stainless Steel, Carbon Steel, Low-Temperature Carbon Steel, Alloy Steel, Duplex, and Super Steel and Nickel Alloys

Suggested bending applications for tube, pipe and profile bending equipment

  • Ornamental iron work
  • Exhaust tube bending
  • Exhaust pipe bending
  • Conduit bending
  • Mandrel pipe bending
  • Non mandrel pipe bending
  • Angle iron bending
  • Tube bending
  • Flat iron bending
  • Sand buggy chassis bending
  • Dune buggy chassis bending
  • Kit car chassis bending
  • Stock car chassis bending
  • Drag race chassis bending
  • Awning bending
  • Roll cage bending
  • Metal craft bending
  • Tube chassis bending
  • Hand rail bending
  • Aluminum bending
  • Stainless steel bending
  • Chrome moly bending
  • Angle bending
  • Sign frame bending
  • Fire place bending
  • U Hook bending
  • Curtain track profile bending
  • Metal folding
  • Trailer frame bending
  • Furniture tube frame bending
  • Copper tube bending for plumbing
  • Marine tube bending
  • Refinery tube bending
  • Heat exchangers bending
  • Tube coil bending
  • Performance racing chassis bending
  • Portable greenhouse bending
  • Trailer roof bending
  • Truck awning bending
  • Scroll bending
  • Dairy tube bending
  • Custom exhaust bending
  • Bar twisting for ornamental pickets

Benefits of Pipe Bend

Enhanced Flow Efficiency

Pipe bend offer a smooth transition for fluid or gas flow, reducing the chances of turbulence or obstructions. This results in improved flow efficiency, ensuring that the system operates at its maximum potential while minimizing energy loss.


Minimized Pressure Drop

By carefully curving the piping system, pipe bends minimize pressure drop across the system. This enables the fluid or gas to flow smoothly, reducing the strain on pumps and valves and maintaining consistent pressure levels.


Flexibility in Design

With a wide range of sizes, standards, and types available, pipe bends offer design flexibility. Whether you require a 1.5d pipe bend, 3D Pipe Bend, 4d pipe bend, 5d pipe bend, 10d pipe bend, or a 180-degree pipe bend, we offer the right solution to suit your project specifications.


Space Optimization

In congested or limited space environments, pipe bend prove invaluable. Their ability to redirect the flow while taking up less space compared to traditional piping methods allows for more efficient use of available space.


Long-lasting Durability

Our pipe bend are manufactured using premium-grade materials, ensuring their durability and resistance to corrosion, abrasion, and extreme temperatures. This longevity reduces maintenance requirements and enhances the lifespan of the entire piping system.

Size

The bend is used to change the direction of run of pipe.it advantage is can matach long distance transition requirements,so it is commonly that bends dimension according to customer design.

Constants for Pipe Bends:

Formula:L = R x BL = Length of pipe requiredR = Radius of bendB = Constant from table used to find “L”L =30 x 1.5705 =47.115 in.or 47-1/8”

Pipe bend design

Standards accord to:

  • ASME B16.9
  • ASME B16.28
  • ANSI/ASME B16.25
  • MSS SP-97

Pressure: SCH5 to SCH160

Bending radius(R): R=3D, 5D, 7D and 12D
Bending angle (θ):15°, 30°, 45°, 60°, 90°, 135°, 180°

Outer diamete(D): D≤1800mm
Wall thickness(T): T≤120mm
Straight Length (L): The length between two ends general from 300mm-1500mm

Example: Find the length of pipe required to make a 90 bend with a radius of 30"

Nominal pipe Outside Diameter at Bevel Center to End
DN size D1 D2 C M
Series A Series B Series A Series B
20×15 26.9 25 21.3 18 29 29
25×20 33.7 32 26.9 25 38 38
25×15 33.7 32 21.3 18 38 38
32×25 42.4 38 33.7 32 48 48
32×20 42.4 38 26.9 25 48 48
32×15 42.4 38 21.3 18 48 48
40×32 48.3 45 42.4 38 57 57
40×25 48.3 45 33.7 32 57 57
40×20 48.3 45 26.7 25 57 57
40×15 48.3 45 21.3 18 57 57
50×40 60.3 57 48.3 45 64 60
50×32 60.3 57 42.4 38 64 57
50×25 60.3 57 33.7 32 64 51
50×20 60.3 57 26.9 25 64 44
65×50 76.1(73) 76 60.3 57 76 70
65×40 76.1(73) 76 48.3 45 76 67
65×32 76.1(73) 76 42.4 38 76 64
65×25 76.1(73) 76 33.7 32 76 57
80×65 88.9 89 76.1(73) 76 86 83
80×50 88.9 89 60.3 57 86 76
80×40 88.9 89 48.3 45 86 73
80×32 88.9 89 42.4 38 86 70
90×80 101.6 - 88.9 - 95 92
90×65 101.6 - 76.1(73) - 95 89
90×50 101.6 - 60.3 - 95 83
90×40 101.6 - 48.3 - 95 79
100×90 114.3 - 101.6 - 105 102
100×80 114.3 108 88.9 89 105 98
100×65 114.3 108 76.1(73) 76 105 95
100×50 114.3 108 60.3 57 105 89
100×40 114.3 108 48.3 45 105 86
125×100 139.7 133 114.3 108 124 117
125×90 139.7 - 101.6 - 124 114
125×80 139.7 133 88.9 89 124 111
125×65 139.7 133 76.1(73) 76 124 108
125×50 133 60.3 57 124 105
150×125 168.3 159 139.7 133 143 137
150×100 168.3 159 114.3 108 143 130
150×90 168.3 - 101.6 - 143 127
150×80 168.3 159 88.9 89 143 124
150×65 168.3 159 76.1(73) 76 143 121
200×150 219.1 219 168.3 159 178 168
200×125 219.1 219 139.7 133 178 162
200×100 219.1 219 114.3 108 178 156
200×90 219.1 - 101.6 - 178 152
200×200 273 273 219.1 219 216 208
200×150 273 273 168.3 159 216 194
200×125 273 273 139.7 133 216 191
200×100 273 273 114.3 108 216 184
300×250 323.9 325 273 273 254 241
300×200 323.9 325 219.1 219 254 229
300×150 323.9 325 168.3 159 254 219
300×125 323.9 325 139.7 133 254 216
350×300 355.6 377 323.9 325 279 270
350×250 355.6 377 273 273 279 257
350×200 355.6 377 219.1 219 279 248
350×150 355.6 377 168.3 159 279 238
400×350 406.4 426 355.6 377 305 305
400×300 406.4 426 323.9 325 305 295
400×250 406.4 426 273 273 305 283
400×200 406.4 426 219.1 219 305 273
400×150 406.4 426 168.3 159 305 264
450×400 457.2 478 406.4 426 343 330
450×350 457.2 478 355.6 377 343 330
450×300 457.2 478 323.9 325 343 321
450×250 457.2 478 273 273 343 308
450×200 457.2 478 219.1 219 343 298
500×450 508 529 457.2 478 381 368
500×100 508 529 406.4 426 381 356
500×350 508 529 355.6 377 381 356
500×300 508 529 323.9 325 381 346
500×250 508 529 273 273 381 333
500×200 508 529 219.1 219 381 324
550×500 559 - 508 - 419 406
550×450 559 - 457 - 419 394
550×400 559 - 406 - 419 381
600×550 610 - 559 - 432 432
600×550 610 630 508 530 432 432
600×450 610 630 457 480 432 419
650×600 660 - 610 - 495 483
650×550 660 - 559 - 495 470
650×500 660 - 508 - 495 457
700×650 711 - 660 - 521 521
700×600 711 720 610 630 521 508
700×550 711 - 559 - 521 495
750×700 762 - 711 - 559 546
750×650 762 - 660 - 559 546
750×600 762 - 610 - 559 533
800×750 813 - 762 - 597 584
800×700 813 820 711 720 597 572
800×650 813 - 660 - 597 572
850×800 864 - 813 - 635 622
850×750 864 - 762 - 635 610
850×700 864 - 711 - 635 597
900×850 914 - 864 - 673 660
900×800 914 920 813 820 673 648
900×750 914 - 762 - 673 635
950×900 965 - 914 - 711 711
950×850 965 - 864 - 711 698
950×800 965 - 813 - 711 686
1000×950 1016 - 965 - 749 749
1000×900 1016 1020 914 920 749 737
1000×8500 1016 - 864 - 749 724
1000×1000 1067 - 1016 - 762 711
1050×950 1067 - 965 - 762 711
1050×900 1067 - 914 - 762 711
1100×1050 1118 - 1067 - 813 762
1100×1000 1118 1120 1016 1020 813 749
1100×950 1118 - 965 - 813 737
1150×1100 1168 - 1118 - 851 800
1150×1050 1168 - 1067 - 851 787
1150×1000 1168 - 1016 - 851 775
1200×1150 1220 - 1168 - 889 838
1200×1100 1220 1220 1118 1120 889 838
1200×1050 1220 - 1067 - 889 813

Delivery

Inspection

Visual Inspection is conducted on fittings to check any surface imperfections. Both fittings body and weld are checked for any visible surface imperfections such as dents, die marks, porosity, undercuts, etc. Acceptance as per applicable standard.

ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers

Packing

For packing of carbon steel flanges with painting,we would use the bubble wrap to protect the painting.For flanges without painting or oiled with long-term shipment,we would suggest client to use the anti-tarnish paper and plastic bag to prevent the rust.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

The White Glove Service You Deserve

When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.

application

Materials delivered on-time and at a fair price

application

No delays in production or manufacturing process

application

Meet engineering specifications to ensure top quality

application

World-class customer service ready to help