Straight Pipes With Ceramic Lining
Alumina Ceramic Lined Straight Pipes prevents the pipes from wear and erosion.
Pipe pieces with ceramic lining are designed for exceptional durability and corrosion resistance, ideal for harsh environments. These pipe segments extend service life and reduce maintenance costs with their protective ceramic barrier.
Download PDFThe durability of Abrasion Resistant Ceramic Lined Pipe and Elbow directly affects the safe running of fluid transmit system!
We successfully combined the ceramic with the steel matrix directly, and firstly developed mass production.
This technique created a brand-new ceramic-metal bonding way to overcome the problem that the ceramic is lack of impact resistance and thermal stability, and easy to pull off.
After times of trials, we insist on choosing 95% Alumina Ceramics with high quality to ensure your best experience.
Pipe pieces with ceramic lining are specialized segments of piping designed to provide exceptional wear and corrosion resistance. These pieces are particularly useful in environments where conventional pipe materials would succumb to abrasive materials or corrosive chemicals. The ceramic lining serves as a protective barrier, extending the life of the pipe and reducing maintenance costs.
The ceramic lining is applied to the interior of the pipe pieces through various methods such as thermal spraying, where a ceramic material is heated and applied as a coating, or by using a slip casting process, where a liquid ceramic mixture is poured into a mold and then hardened. The choice of ceramic material can vary depending on the specific application requirements, with materials like alumina, silicon carbide, or zirconia being commonly used due to their high resistance to wear and corrosion.
In industries such as mining, where the transport of abrasive slurries is common, or in chemical processing, where corrosive materials are handled, pipe pieces with ceramic lining are invaluable. They also find application in power plants, oil and gas transmission, and wastewater treatment facilities.
When specifying and ordering pipe pieces with ceramic lining, it's important to consider the pipe's nominal size, wall thickness, the type of ceramic material, and the method of lining application. Additionally, the end connections, such as flanged, threaded, or welded, should be specified to ensure compatibility with the existing piping system.
Item | Index |
---|---|
Content of Alumina | ≥95% |
Density | ≥3.5 g/cm3 |
Rockwell Hardness | ≥80 HRA |
Impact Strength | ≥850 Mpa |
Bending Strength | ≥290MPa |
Breaking Temper | ≥4.8MPa·m1/2 |
Coefficient of Linear Thermal Expansion | 20W/m.K |
Sand injection test | 30% Transfer test of sludge with SiO2 | ||
---|---|---|---|
Material | Volume diminution (cm3) |
Material | Volume diminution (cm3) |
Ceramic lined Steel pipe | 0.0022 | Ceramic lined Steel pipe | 3 |
Ceramic pipe Al2O397% | 0.0025 | S45C | 25 |
Items | Index |
---|---|
Alumina content | 92% |
Bulk Density | 3.62g/cm³ |
Rockwell Hardness (HRA) | 90 |
Compressive Strength | 850MPa |
Fracture Toughness | 4.8MPa.M1/2 |
Bending Strength | 290MPa |
Thermal Conductivity 20℃ | 20W/m.k |
Coefficient of Thermal Expansion | 7.2×10-6m/×m.k |
Young's Modulus 20℃ | 277GPa |
Shear Modulus 20℃ | 113GPa |
Surface Finish: As Fired | 1.27mm |
Wear-resisting bend (wear resistant ceramic pipe)just as its name implies is a relatively traditional is more wear-resisting bend (wear resistant ceramic pipe), adopted the new wear-resistant plastic production, used in large industrial, currently occupies the market share of around 80%.
Ceramic lined is an application that provides protection for materials in environments that experience exposure to extreme chemicals and temperatures.
Ceramic lined refers to a material or surface that has a layer of ceramic applied to it. This ceramic layer provides protection against wear, corrosion, and abrasion, making it ideal for use in industrial applications where harsh conditions can cause damage to equipment over time. Ceramic lining is commonly used in pipes, tanks, and other equipment used in chemical processing, mining, and power generation industries.
The ceramic lined pipe transport has been widely used in the industries of electric power, metallurgy, coal, petroleum, chemical engineering, building materials, mechanism and so on.
The ceramic lined elbow throughout the power, metallurgy, coal, petroleum, chemical, building materials, machinery and other industries, and high-speed development. When lining the wear-resistant ceramic elbow to deliver high grinding material (such as ash, coal, ore powder, etc.), there is a lining of wear-resistant ceramic elbow wear fast, especially the elbow Wear faster. When lining a The ceramic lined elbow to deliver a highly corrosive gas, liquid or solid, there is a problem that the lined wear-resistant ceramic elbow is corroded and is quickly damaged.
There is a problem that it is expensive to use a heat-resistant steel pipe when the material having a higher temperature is conveyed in the lining of the wear-resistant ceramic elbow. After lining the wear-resistant ceramic elbow, these problems are solved.
The ceramic lined elbow is widely used in wear and tear of the mine filling material, ore powder and tailings transport, coal-fired power plant powder, smelting, ash and other lined with wear-resistant ceramic elbow is also very appropriate.
The ceramic lined pipe, Elbows, Reducer, Tees and others manufactured in our factory have been used in over 200 thermal power plants, more than 50 mines and the industries of coal, building materials, mechanism, petroleum and so on.
The abrasion pipe of thermal power plant is mainly conveying raw coal powder, ash slag, flue gas desulfurization (FGD) limestone powder and slurry, due to the transmission of medium velocity fast, poor operating conditions, resulting in pipelines, especially elbow, variable diameter pipe serious wear and corrosion, not only consumes a lot of metal materials, but also to the thermal power plant security, economic operation has brought hidden dangers. The abrasion mechanism of pipeline is mainly based on erosion wear. Wear-resistant pipe can be divided into two categories: single metal pipe and composite pipe.
Hoop strength is the resistance against radial pressure. The strength of the ceramic -lined steel composite pipe is 300 to 500MPa.
There are probably hundreds of different methods for packing a abrasion resistant pipe and Elbows, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.
Wear-resistant ceramic composite pipe, full name ceramic liner composite steel pipe, is a kind of ceramic composite steel pipe.
Ceramic (Corundum: a-Al2O3) lined abrasion resistant straight pipe and fittings are lined with highly abrasion resistant ceramic by SHS -------Self-propagating High-temperature Synthetic process.
A small amount of iron also remains in the ceramic layer. There is a thin equiaxed grain area of alumina near the steel pipe wall, and then alumina was grown in form of dentrite to the surface of ceramic layer.
When abrasive material is transported through steel pipe in mining applications, typically as pumped slurry, the pipe can quickly be eroded from the inside out, which in more extreme cases can result in pipe leaks and even failure, or significant maintenance costs and downtime for pipe replacement.
Section of the composite pipe
Microstructure of ceramic layer
FeAl2O4 distributes among alumina dentrite. Although the ceramic layer was solidified from one end to another end of a pipe, the microstructure of ceramic layer was almost uniform throughout the whole length of the pipe.
Resistance to thermal shock
A composite elbow was used
in a mining plant for about
fifty thousands hours.
Hoop strength
Hoop strength is the resistance against radial pressure. The strength of the ceramic -lined steel composite pipe is 300 to 500MPa.
Compression-Shear strength
Compression-shear strength is the bonding strength at the interface between the ceramic layer and the steel pipe. The compression-shear strength of the ceramic-lined composite pipe is 15 to 20MPa.
Resistance to mechanical shock
The ceramic layer does not crack or flake off when the composite pipe receives a mechanical shock.
Resistance to thermal shock
The ceramic layer does not crack or flake off when heated to 800℃ and then quenched.
Resistance to abrasion
The ceramic-lined steel composite pipe has exceptional resistance to abrasion. Its service life in materials transportation with hard abrasives is more than 20 times longer than in common steel pipe.
For these abrasive applications, mild steel pipe is not tough enough to stand up to the abuse for more than a year or two. As a result, maintenance engineers are seeking superior piping alternatives to reduce maintenance and prolong system life, at a price point that will not significantly impact the budget.
The general servicelife of common steel elbow is about 700 hours.
The ceramic-lined steel composite pipe can be joined by welding the steel pipe layer.
The ceramic-lined steel composite pipes are lighter than alloy pipes, cast iron pipes, and cast stone pipes, which reduces the expense of transportation and makes the pipes easier to install.
Good weld ability
The relative weight of the
composite pipe is about
40-50% lighter than that of the
caststone pipe
The ceramic-lined steel composite pipes can be easily connected by welding, or with flanges and soft easy connectors.
Convenient installation
The composite pipes have good corrosion-resistant. There is no evidence of corrosion filling the composite pipes with bitter for one year (left), but the common steel pipe under the same condition is corroded seriously (right).
Ceramic liner composite pipe is different from traditional seamless steel pipe, wear-resisting alloy cast steel pipe, cast stone pipe, steel plastic pipe and steel rubber pipe.
Self-propagating high temperature synthesis (SHS) is used to describe a process in which the initial reagents (usually powders), when ignited, spontaneously transform into products due to the exothermitic heat of reaction.
A well-known example of SHS reaction is the thermite reaction given below:
This reaction generates temperatures above the melting point of alumina and is used in the thermit welding process for joining railway lines.
Several other terminologies - such as combustion synthesis, gasless combustion or self-propagating exothermic reaction - are used to describe the process.
The types of material that can be formed using this process include metal borides, silicides, carbides, nitrides, sulphides, aluminides and oxides.
The combination of high rigidity of ceramic and high elasticity of steel gives the pipe unmatchable features as an abrasion resistant, heat resistant and corrosion resistant material for use in the fields of power generation, metallurgy, mining, and chemical industry etc.. It has many advantages over steel pipes, cast stone pipes, and steel-plastic compound pipes.
The composite pipe is composed of three layers: ceramic, intermediate, and steel layers. The ceramic layer is formed by molten alumina at a temperature above 2500 degree.
The molten alumina produced from the reaction Fe2O3+2Al=2Fe+Al2O3 spreads on the inside wall of the steel pipe under the influence of a centrifugal force, then solidifies, so the ceramic layer has high density and smooth surface and bonds to the steel pipe. They are widely used to convey highly abrasive material such as fly ash and any other fine powder material in mine, thermo power generating, coal processing plant, metallurgy, construction, etc. The service life is 10 to 20 times longer than normal steel pipe.
When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.