EN 10216-2 Seamless Steel Tubes

Navigating the World of EN 10216-2 Seamless Steel Tubes: Applications and Benefits

EN 10216-2 is a European standard for seamless steel tubes used in high-pressure industries like power generation and petrochemicals.

It outlines manufacturing, testing, and dimensions, ensuring suitability for elevated temperatures and pressures.

Understanding EN 10216-2:

EN 10216-2 is a European standard for seamless steel tubes for pressure purposes. It covers the procedures and specifications for manufacturing high-quality non-alloy and alloy seamless steel tubes.

The standard includes the following steel grades:

P195GH, P235GH, P265GH, 16Mo3, 14MoV6-3, 13CrMo4-5, 10CrMo9-10.

The pipes are used in boilers, heat exchangers, and pressure vessels. The maximum application temperature is approximately 400 °C. The pipes have outer diameters ranging from 10.2mm to 711mm and wall thicknesses ranging from 1.6mm to 100mm.

The British Standard is the official English language version of EN 10216-2:2002.

Applications of EN 10216-2 Seamless Steel Tubes:

EN 10216-2 seamless steel tubes find extensive use in various industries due to their exceptional properties and durability. Some notable applications include:

Benefits of EN 10216-2 Seamless Steel Tubes:

EN 10216-2 seamless steel tubes offer several benefits that make them a preferred choice in various industries:

Importance of Compliance:

Adhering to the EN 10216-2 standard is of paramount importance to ensure the quality and safety of seamless steel tubes. Compliance guarantees that the tubes meet stringent requirements for composition, mechanical properties, and testing procedures. It also enhances the interoperability of tubes across different industries.

In conclusion, EN 10216-2 seamless steel tubes play a vital role in modern industries, providing the necessary infrastructure for energy, petrochemical, mechanical, and automotive sectors. Their high-temperature and pressure resistance, combined with their reliability, make them indispensable components in applications where safety, durability, and efficiency are paramount.

Grades

Different grades of P265GH tubes are used for different applications. For example, the EN 10216-2 P265GH-TC1 grade has increased silicon, manganese, and phosphorus content, which improves its corrosion resistance and wear resistance.

Equivalent Materials

This part of EN1026 specifies the technical delivery conditions in two test categories for seamless tubes for circular cross section, with specified elevated temperature properties, made of non-alloy and alloy steel.

Application

P265GH tubes are primarily used in the manufacture of boilers, pressure vessels, and pipes for transporting hot liquids.

EN 10216 Seamless steel tubes for pressure purposes

DIN EN 10216-1

Seamless steel tubes for pressure purposes - Technical delivery conditions -Part 1: Non-alloy steel tubes with specified room temperature properties

Specifies the technical delivery conditions for two qualities, T1 and T2, of seamless tubes of circular cross section, with specified room temperature properties, made of non-alloy quality steel.


DIN EN 10216-2

Seamless steel tubes for pressure purposes - Technical delivery conditions - Part 2: Non alloy and alloy steel tubes with specified elevated temperature properties; German version EN 10216-2:2002+A2:2007

The document specifies the technical delivery conditions in two test categories for seamless tubes of circular cross section, with specified elevated temperature properties, made of non-alloy and alloy steel.


DIN EN 10216-3

Seamless steel tubes for pressure purposes -Technical delivery conditions - Part 3: Alloy fine grain steel tubes

Specifies the technical delivery conditions in two categories for seamless tubes of circular cross section, made of weldable alloy fine grain steel


DIN EN 10216-4

Seamless steel tubes for pressure purposes - Technical delivery conditions -Part 4: Non-alloy and alloy steel tubes with specified low temperature properties

Specifies the technical delivery conditionsin two categories for seamless tubes of circular crossection, made with specified low temperature properties, made of non-alloy and alloy steel.


DIN EN 10216-5

Seamless steel tubes for pressure purposes - Technical delivery conditions-Part 5: Stainless steel tubes; German version EN 10216-5:2004, Corrigendum to DIN EN 10216-5:2004-11; German version EN 10216-5:2004/AC:2008

This Part of this European Standard specifies the technical delivery conditions in two test categories for seamless tubes of circular cross-section made of austenitic (including creep resisting steels) and austenitic-ferritic stainless steel which are applied for pressure and corrosion resisting purposes at room temperature, at low temperatures or at elevated temperatures. It is important that the purchaser, at the time of enquiry and order, takes in account the requirements of the relevant national legal regulations for the intended application.

What Is Non Alloy Steel?

Steel is common called carbon steel because of the mixture of carbon atoms with iron atoms. The added elements provide the steel with ductility and strength. During the smelting process, other elements, such as aluminum is added to the steel making it an alloy steel. Non-alloy steel has no elements added to the steel as it is smelted.

Manufacturing

The manufacturing of steel is done by placing ore in a furnace a smelting the ore. The smelting process removes any impurities in the iron ore. Once the first smelting process is performed, the steel still has too much carbon content to become non-alloy steel. The smelting process is performed again and again until the carbon content in the ore falls below 1.5 percent of the total content.


Smelting

The smelting process melts the iron ore. By melting the ore, the extraction of elements and impurities can be accomplished. The manufacturer only wants the iron and a small amount of carbon from the ore to make non-alloy steel. During the smelting process, elements get added to the ore such as cobalt, copper and aluminum, which makes the steel an alloy steel. Non-alloy steel has no other elements added to the iron and carbon during the smelting process.


Tempering

The non-alloy steel must be tempered at a certain temperature because it does not use other elements to make it flexible and durable. Tempering non-alloy steel at a certain temperature make the steel more sensitive to cracking when being welded.

cut tube

Related Navigating the World of EN 10216-2 Seamless Steel Tubes: Applications and Benefits

Inspection and Test For EN 10216-2 Steel Pipe

Inspection and test type Test frequency Test category
Mandatory tests Ladle analysis One per ladle 1 2
Tensile testing in room temperature One per every test pipe X X
Flattening test for D<600mm and the ratio of D≤0.15 but T≤40mm or ring testing for D>150mm and T ≤40mm X X
Rolling test on a mandrel bar for D≤150mm and T≤10mm or ring testing for D≤114,3mm and T ≤12,5mm X X
Resilience testing at the temperature of 20 ºC X X
Tightness testing Every pipe X X
Dimensional testing   X X
Visual inspection   X X
NDT in order to identify longitudinal discontinuity Every pipe X X
Material identification for alloy steel X X
Optional tests Final product analysis One per ladle X X
Tensile testing at elevated temperature One per ladle and for the same thermal processing conditions X X
Resilience testing One per every test pipe X X
Resilience testing in the machine direction at the temperature of -10ºC for non-alloy steel grades X X
Wall thickness measurement at a distance from pipe ends   X X
NDT in order to identify transverse discontinuity
Every pipe
X X
NDT in order to identify delamination X X

Dimension for EN10216-2 Steel pipe

EN 10216-2 Outside diameter and wall thickness tolerances
Outside diameter D mm Permissible deviations
of outside diameter D
Permissible deviations of wall thickness
depending on the T/D ratio
≤0.025 >0.025
≤0.050
>0.050
≤0.10
>0.10
D≤219,1 +\- 1% or =\- 0.5mm depending on which is greater +\- 12,5% or 0.4 mm depending on which is greater
D>219,1 =\- 20% =\- 15% =\- 12,5% =\- 10%

For the outside diameter of D≥355,6 mm, local deviation outside of the upper deviation limit by further 5% of the wall thickness T is permitted

Seamless tube processing

With years of expertise, we provide a diverse array of steel tube processing options. From sawing and machining tube blanks to intricate bending and upsetting operations, we actively assist you throughout your projects.

Our capabilities extend to eccentricity reduction and concentricity enhancement through turning and grinding. We excel in creating complex geometries using processes like rotary swaging and axial forming. Additionally, we offer property modifications via partial heat treatment, ensuring tailored solutions for your specific needs.

Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.
Steel strips bunding for fixed pipes

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Our packing can meet any needs of the customers.

FAQ FAQ

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.
  • Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.

Pipes, Tubes and Hollow Sections

Norms

  • API 5L – Line Pipe
  • ASTM A 53 – Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, Steel Pipe
  • ASTM A 106 – Seamless Carbon Steel Pipe for High-Temperature Service
  • ASTM A 213 – Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
  • ASTM A 269 – Seamless and Welded Austenitic Stainless Steel Tubing for General Service
  • ASTM A 312 – Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes
  • ASTM A 333 – Seamless and Welded Steel Pipe for Low-Temperature Service
  • ASTM A 335 – Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
  • ASTM A 358 – Electric-Fusion-Welded Austenitic Chromium-Nickel Stainless Steel Pipe for High-Temperature Service and General Applications
  • ASTM A 671 – Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures
  • ASTM A 672 – Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures
  • ASTM A 790 – Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe
  • ASTM A 928 – Ferritic/Austenitic (Duplex) Stainless Steel Pipe Electric Fusion Welded with Addition of Filler Metal
  • EN 10208-2 – Steel pipes for pipelines for combustible fluids – Part 2: Pipes of requirement class B
  • EN 10210-1/2 – Hot finished structural hollow sections of non-alloy and fine grain steels
  • EN 10216-1 – Seamless steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10216-2 – Seamless steel tubes for pressure purposes – Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10217-1 – Welded steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10217-2 – Welded steel tubes for pressure purposes – Part 2: Electric welded non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10219-1/2 – Cold formed welded structural hollow sections of non-alloy and fine grain steels
  • EN 10297-1 – Seamless circular steel tubes for mechanical and general engineering purposes – Part 1 Non-alloy and alloy steel tubes

Grade

  • API 5L Gr. A, B, X42, X52, X60, X65, X70
  • ASTM A 53 Gr. A, Gr. B
  • ASTM A106 Gr. A, B, C
  • ASTM A 213 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H, T5, T9, T11
  • ASTM A 269 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 312 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 333 Gr. 3, Gr. 6 ASTM A 335 P1, P2, P5, P9, P11, P12, P22, P91, P92
  • ASTM A 358 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 671 CC 60, CC 65, CC 70
  • ASTM A 672 CC 60, CC 65, CC 70
  • ASTM 790 UNS S31803, UNS S32205, UNS S32750, UNS S32760
  • ASTM A928
  • EN 10208-2 L245, L 290, L360
  • EN 10210-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10216-1 P235 TR1/2
  • EN 10216-2 P235 GH, P265 GH
  • EN 10217-1 P235 TR1/2, P275 TR1/2
  • EN 10217-2 P235 GH, P265 GH
  • EN 10219-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10297-1 E235, E275, E315, E355, E470

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion and oxidation. Increases hardenability and wear resistance. Increases high temperature strength.
Nickel Increases hardenability. Improves toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high temperature hardness, and wear resistance. Enhances the effects of other alloying elements. Eliminate temper brittleness in steels. Increases high temperature strength.
Manganese Increases hardenability. Combines with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making. Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces fine grain size.
Aluminum Forms nitride in nitriding steels. Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear resistance.
Tungsten Increases hardness at elevated temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

The White Glove Service You Deserve

When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.

application

Materials delivered on-time and at a fair price

application

No delays in production or manufacturing process

application

Meet engineering specifications to ensure top quality

application

World-class customer service ready to help